NATIONAL EDUCATION POLICY-2020

Syllabus for Sri Dev Suman Uttarakhand University, Badshahithaul, Tehri (Garhwal) and Affiliated Colleges

UG & PG PHYSICS SYLLABUS

2023

Sri Dev Suman Uttarakhand University

Badshahithaul, Tehri (Garhwal)

Curriculum Design Committee, Uttarakhand

S. No.	Name & Designation	
	Prof. N.K. Joshi	Chairman
1.	Vice-Chancellor, Sridev Suman Uttarakhand University, New Tehri	
2.		Member
	Vice-Chancellor, Kumaun University, Nainital	Wiember
3.	Prof. Jagat Singh Bisht	Member
	Vice-Chancellor, Soban Singh Jeena University Almora	
4.	Prof. Surekha Dangwal	Member
	Vice-Chancellor, Doon University, Dehradun	
5.	Prof. O. P. S. Negi	Member
	Vice-Chancellor, Uttarakhand Open University, Haldwani	
6.	Prof. M.S.M. Rawat	Member
	Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	
7.	Prof. K. D. Purohit	Member
	Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	

Syllabus Preparation Committee

A: Department of Physics, Sri Dev Suman Uttarakhand University Pt. Lalit Mohan Sharma Campus, Rishikesh

S.N.	Name	Designation	
1.	Dr. Yogesh Kumar Sharma	Professor & Head	17/23
2.	Dr. Manoj Yadav	Professor 1. da	111-2
3.	Dr. Bimal Prkash Bahuguna	Professor BLS	0
4.	Dr. Hemant Singh	Associate Professor	emoter

B: Experts from Other Institutions

S. N.	Name	Designation and Address	
1.	Prof. G. K. Dhingra	Dean. Faculty of Science, Pt. L.M.S. Campus Rishikesh	6-04-2
2.	Prof. L. P. Purohit	Professor, Department of Physics, Gurukula Kangri (Deemed to be) University Haridwar	e precen
3.	Prof. Pushpa Negi	Principal & Professor of Physics, Govt. P. G. College, New Tehri	e preseu
4.	Prof. Pankaj Pant	Principal, Govt. P. G. College, Nagnath Pokhari	1
5.	Prof. Kuldeep Singh Negi	Principal, Govt. P. G. College, Khanpur	11.7.00
6.	Prof. Anita Rawat	Director, USERC, Dehradun	23

Kathait Ajaib Singh <singhajaib81@gmail.com>

Fw: syllabus

1 message

Yogesh Sharma <dryksharma@yahoo.com> To: "singhajaib81@gmail.com" <singhajaib81@gmail.com> Sat, Jul 15, 2023 at 7:51 AM

Dr Yogesh Kumar Sharma Professor and Head Department of Physics S. D. S. Uttarakhand University Pt. L M S Campus Rishikesh, (Dehradun) Uttarakhand Pin Code -249201 dryksharma@yahoo.com yksharmaphysics@gmail.com

----- Forwarded message -----From: L.P. Purohit <lppurohit@gmail.com> To: Yogesh Sharma <dryksharma@yahoo.com> Sent: Tuesday, 11 July 2023 at 09:58:08 pm GMT+5:30 Subject: Re: syllabus

Dear Prof. Y.K. Sharma, I have gone through the syllabus of the Four Year UG Programme of B.Sc. (Physics) and one Year P.G. Programme of M.Sc. Physics designed as per the recommendation of NEP 2020. I hereby approve the same. With regards, Prof. L.P. Purohit External member/Subject Expert

On Tue, Jul 11, 2023 at 11:09 AM Yogesh Sharma dryksharma@yahoo.com> wrote: PFA

Dr Yogesh Kumar Sharma Professor and Head Department of Physics S. D. S. Uttarakhand University Pt. L M S Campus Rishikesh, (Dehradun) Uttarakhand Pin Code -249201 dryksharma@yahoo.com yksharmaphysics@gmail.com

Dr. L.P. Purohit Professor & Head Department of Physics Dean, Faculty of Science Gurukula Kangri University Haridwar - 249 404 (Uttarakhand), INDIA Email: lppurohit@gmail.com; proflppurohitphys@gmail.com; lppurohit@gkv.ac.in Tel. +91 7300761217

4310 S37

Rente. 11 07- 23

I,(Prof.) Pushpa Negi attended Board of studies online meeting on dated 11-07-2023.

The attached syllabus of UG.& PG Physics is approved and recommended.

7.2023

Protection Principal Princ

National Education Policy-2020

Syllabus for Sri Dev Suman Uttarakhand University and All Affiliated Colleges for B.Sc. in Physics.

2023

		Lis	st of Papers in Six Semesters (B.Sc.Degree) mester-wise Titles of the Papers in Physics		
Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits
	1		Certificate Course in Basic Physics		
FIRST	Sem I	CPT1001	Mechanics	Theory	(04)
YEAR		CPP 1002	Mechanical Properties of Matter	Practical	(02)
	Sem II	CPT 1003	Electricity and Magnetism	Theory	(04)
		CPP 1004	Demonstrative Aspects of Electricity & Magnetism	Practical	(02)
			Diploma in Applied Physics		1
SECOND YEAR	Sem III	DPT 2001	Thermodynamics and Statistical Physics	Theory	(04)
		DPP 2002	Demonstrative Aspects of Thermal Properties & Statistical Physics	Practical	(02)
	Sem TV	DPT 2003	Optics	Theory	(04)
		DPP 2004	Demonstrative Aspects of Geometrical and Physical Optics	Practical	(02)
			Bachelor of Science		
1.1	Sem V	BPT3001	Solid State Physics	Theory	(04)
		BPP3002	Demonstrative Aspects of Solid State Physics	Practical	(02)
THIRD YEAR		BPT 3003	Basic Electronics	Theory	(04)
		BPP 3002	Demonstrative Aspects of Basic Electronics	Practical	(02)
	Sem VI	BPT 3003	Modern Physics & Elementary Quantum Mechanics	Theory	(04)
		BPP3004	Demonstrative Aspects of Modern Physics & Elementary Quantum Mechanics	Practical	(02)
		BPT 3005	Analog and Digital Electronics	Theory	(04)
		BPP 3006	Demonstrative Aspects of Analog & Digital Circuits	Practical	(02)

Subject prerequisites:

- 1. For SemesterI:12th pass with subjects Physics, Chemistry & Mathematics
- 2. For SemesterII: Passed Semester I with Physics
- 3. For SemesterIII: Passed Semester II with Certificate Course in Basic Physics
- 4. For SemesterIV: Passed Semester III
- 5. For SemesterV: Passed Semester IV with Diploma in Applied Physics
- 6. For SemesterVI: Passed SemesterV

Programme outcomes (POs):

Students having Degree in B.Sc. (with Physics) should have knowledge of different concepts and fundamentals of Physics and ability to apply this knowledge in various fields of academics and industry. They may pursue their future career in the field of academics, research and industry.

1. Competence in the methods and techniques of calculations using Mechanics.
2. Students are expected to have hands-on experience to apply the theoretical knowledge to solve practical problems.
1. Students are expected to have deep understanding of electricity and magnetism.
2. Student should be able to make basic electrical circuits and handle electrical instruments.
1. Competence in the concepts of Thermodynamics and Statistical Physics.
2. Students are expected to have hands on experience in Thermal and Statistical Physics Experiments.
1 Knowledge of different concepts in Geometrical and Physical Optics.
2 Students are expected to have hands on experience of Experiments of Geometrical and Physical Optics.
1. Knowledge of basic concepts of solid state physics with their applications.
2. Students are expected to have an insight in handling in solid state and basic electronic instruments.
 Comprehensive knowledge of modern physics, elementary quantum mechanics, Analog & Digital electronics and their Applications.
2. Learn the integrated approach to analog electronic circuitry and digital electronics for R&D.
Programme specific outcomes (PSOs): UG I
Year / Certificate course in Basic Physics
bleting this certificate course, the student should have
Acquired the basic knowledge of Mechanics, Electricity and Magnetism.
• Hands-on experience to apply the theoretical knowledge to solve practical problems of basic physical phenomena. He should be able to carry out experiments to understand the laws and concepts of Physics.
• An insight in understanding electrical circuits and in handling electrical instruments.
Programme specific outcomes (PSOs): UG II Year/ (Diploma in Applied Physics)

After completing this diploma course, the student should have

- Knowledge of different concepts in Thermodynamics, statistical physics, Geometrical and Physical Optics.
- Knowledge of different aspects of Thermal Physics and Statistical Mechanics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.
- A deeper insight in Ray Optics to understand the Physics of many optical instruments which are widely used in research and Industry, Optoelectronics, IT and communication devices, and in industrial instrumentation.
- Knowledge of basic concepts of optical instruments with their applications in technology.

	Programme specific outcomes (PSOs): UG					
	III Year / Bachelor of Science					
After con	pleting this degree course, the student should have:					
PSO 1						
	Knowledge of Mechanics and basic properties of matter. The course will empower him to apply					
	his theoretical knowledge in various physical phenomena that occur in day to day life and he can use this scientific knowledge for the betterment of the society.					
DGOO	Understanding of basic concepts related to Electricity and Magnetism .He should					
PSO2	be proficienct in designing and handling different electrical circuits					
PSO3	Expertise in different aspects of Thermal and Statistical Physics which serves as a basis for many physical systems used in industrial applications and deals with the physics and technology of Engines and Refrigerators.					
	Proficient in the field of Optics which will increase his demand in research and industrial establishments engaged in activities involving optical instruments.					
PSO4	Proficient in the field of Solid State Physics which will increase his demand in R & D.					
PSO5	<i>Basic knowledge in the field of Modern physics and Quantum Mechanics</i> which have utmost importance at both undergraduate and graduate level.					
PSO6	Comprehensive knowledge of Basic Electronics, Analog & Digital Principles and their Applications.					
	Learn the integrated approach to analog electronic circuitry and digital electronics for R&D.					

				Year wise Structure of B.Sc. in Physics (CORE / ELECTIVE COURSES & PROJECTS)													
				Subject: Physics													
Type of Programme	Year	Sem	Paper I	Credit /hrs	Paper 2	Credit/ hrs	Paper 3	Credits /hrs	Paper 4	Cred its /hrs	Elective Paper	Credit s /hrs	Research Project	Credit/hrs			
		I	Mechanics (Theory)	4/60	Mechanical Properties of Matter (Lab)	2/60					EL1	EL1	ELI				
Certificate	Ι	Π	Π	Electricity and Magnetism (Theory)	4/60	Demonstrative Aspects of Electricity& Magnetism (Lab)	2/60					(One from the list) (04)	4/60				
		ш	Thermodynamics and Statistical Physics (Theory)	4/60	Demonstrative Aspects of Thermal Properties of Matter and Statistical Physics (Lab)	2/60					EL2 (One from the list) (06)	4/60					
Diploma	Ш	IV	Optics (Theory)	4/60	Demonstrative Aspects of Geometrical and Physical Optics (Lab)	2/60											

		V	Solid State Physics (Theory)	4/60	Basic Electronics (Theory)	4/60	Demonstrativ e Aspects of Solid State Physics (Lab)	2/60	Demonstrative Aspects of Basic Electronics (Lab)	2/60	Industrial Training/Res earch Project	Qualifying
Bachelor of Science I	Ш		Modern Physics & Elementary Quantum Mechanics (Theory)	4/60	Analog and Digital Electronics (Theory)	4/60	Demonstrativ e Aspects of Modern Physics & Quantum Mechanics (Lab)	2/50	Demonstrative Aspects of Analog & Digital Circuits (Lab)	2/60	Industrial Training/Res earch Project	Qualifying

Programme:	Programme: Certificate Course in Basic Physics Year: I Semes Paper- Paper-						
Subject: Phy	ysics						
Course Coo	le:	Course Title: Mechanics					
Course Outc	omes						
I. Understand	ling of	Vector Algebra and Vector Calculus.					
2. Understand	l the ph	hysical interpretation of gradient, divergence and curl.					
8. Study of g	avitatio	onal field and potential and understanding of Kepler's la	aws of Plan	netary mo	otion.		
I. Understand	ling of	different frames of references and conservation laws.					
		namics of rigid body and concept of moment of inertiand its applications.	. Study of r	noment o	of inertia of		
		es of matter, response of the classical systems to extern n and its applications.	al forces ar	nd their			
7. Compreher application		lynamics of Fluid and concept of viscosity and surface	tension alo	ng with i	ts		
Credits: 04			Core Cor	mpulsor	y		
Max. Marks External Exa Internal Ass Total No. of	am: 75 essmen		Min. Pas	sing Ma	rks: 33		
		Topic			No. of		
Unit					Lectures		
Unit	Voot	ors Algebra					
	Vecto Deriv diver	ors Algebra or algebra. Scalar and vector products, scalar and vector vative of a vector with respect to a parameter, Del gence and curl, Gauss divergence theorem, Stokes curl t rem, Line, surface and volume integral of a vector funct	operator, heorem and	gradient	10		

Unit III	Conservation Laws	
	Frames of reference, Concept of inertial and Non-inertial frames of references Work energy theorem, Conservative and non-Conservative forces, Linear restoring force, Gradient of potential, Conservation of energy for the particle Energy function, Concept of Centre of mass, Angular momentum and torque Laws of conservation of total energy, total linear momentum and total angular momentum along with their examples.	15
Unit IV	Dynamics of rigid body and Moment of Inertia Translatory and Rotatory motion, Equation of motion for Rotating rigid body, angular momentum vector and moment of inertia, Theorem of parallel and perpendicular axes, Moment of inertia of a cylinder, rod, lamina, ring, disc, spherical shell, solid sphere, kinetic energy of rotation, rolling along a slope, Application to compound pendulum.	10
Unit V	Properties of Matter Basic concept, Elastic constants and their Interrelations, torsion of cylinder, bending of beam, bending moment, Cantilever, shape of Girders/ rail tracks. Viscosity, Stokes's law, Posieuille's formula, Equation of continuity, Bernoulli's theorem, Surface tension and its molecular interpretation.	15

1.R. Resnick and D. Hilliday : Physics Vol-I

2.Berkeley Physics Course : Mechanics Vol-I

3.R.P. Feynman, R.B.Lightan and M.Sand : The Feynman Lectures in Physics

4.D.S. Mathur : Mechanics

5.D.S. Mathur : Elements of Properties of Matter

6. Murray Spiegel, Seymour Lipschutz, Dennis

Spellman, "Schaum's Outline Series: Vector

Analysis", McGraw Hill, 2017.

7. J. C. Upadhaya: Mechanics, S. Chand

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

Enhanced 2. National Programme on Technology Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Swayam Prabha _ DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Physics and Mathematics in 12th

Programme: (Certificate Course in Basic Physics	Year: I	Semester: I Practical (Lab)
Subject: Physi	cs Practical (Lab)		
Course Code	Course Title: Mechanical Properties of Matter (Lab)		
to study and	mes: l physics has the most striking impact on the industry wherever t determine the mechanical properties. t precision and perfection is achieved through Lab Experiments.		ents are used
Credits: 02	Co	ore Compu	ilsory
External Viva	ord File): 15 ractical Exam: 20	in. Passing	g Marks: 17
Unit Topic	No. of		
			Lectures
	Lab Experiment List		
	 To study the Motion of Spring and calculate (a) Spring c g and (c) Modulus of rigidity. To determine the Moment of Inertia of a Flywheel. To determine g and velocity for a freely falling body usin Timing Technique. To determine Coefficient of Viscosity of water by Capill Method (Poiseuille's method). To determine the Young's Modulus of a Wire by Optical Method. To determine the Young's Modulus by bending of beam. 	ng Digital ary Flow Lever	60
	 To determine the Modulus of Rigidity of a Wire by Max needle. To determine the elastic Constants of a wire by S method. To determine the value of g using Bar Pendulum. To determine the value of g using Kater's Pendulum. To determine Surface Tension. To determine the modulus of rigidity by Barton's Apprat (Horizontal and Vertical) To determine the elastic constants by Searle's method 	Searle'	5

Suggested Readings:

- 1. M. Yadav, Practical Physics, Vol 1, KedarNath Ramnath Publication, 2023.
- 2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015. 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on attendance of student in Lab and presentation of practical in the record file. The marks shall be as follows **Record File (15 marks)**

PREREQUISITE: Opted / Passed Semester I, Theory Paper-1

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: <i>Cert</i>	ificate Course in Basic Physics	Year:I	Semester:I Vocational/ Minor
	Subject:Physics		
Course Code:	CourseTitle: Basic Instrumentation Skills-I		
	Vo	cational/M	inor

Credits:03	(Experiments/hands on
	training)
Max. Marks:100	Min.PassingMarks:33
External Exam:75	
Internal Assessment:25	

Total No. of Lectures-Tutorials-Practical (in hours per week):3-0-0

Unit	Торіс	
		Lecture
UnitI	Errors and Mechanical Tools:	
	Instruments accuracy, precision, sensitivity, resolution, range, least count of	
	different instruments, Errors in measurements, Types of errors. Hand tools and	15
	their	
	Uses: Identification, specifications, uses and maintenance of commonly used hand	
	tools: Tweezers Screwdriver (Combination Set), Pliers, Wire Cutters, Wire	
	Strippers, Crimping Tools, Sockets & Hex drivers, Clamps, Rotary Tools:	
	Grinders, Portable Drill Machine, Small Hand Saws.	
UnitII	Electrical & Electronics Cables and Connector	
	Different type of electrical cables and their Specifications. Types of wires & cables,	
	Standard wire gauge (SWG), Practice on different type of cable joint Testing phase	, 10
	, neutral and Earth by tester and multi-meter and test lamp.	
UnitIII	Domestic Wiring	20
	Introduction and explanation of electrical wiring systems, cleat wiring, casino &	
	Capping, house wiring, specification and types, rating & material, Demonstration	
	& Practice on connecting common electrical accessories in circuits and testing	
	them in series board., Testing & replacement of differen1 types of fuses, switches,	
	plug, sockets. Identification of different wiring materials and their specification,	
	Removing of insulation from assorted wires and cable, Making a switch board with	
	electrical accessories, Making Extension board.	

Suggested Reading

- 1. B L Theraja: A text book in Electrical Technology
- 2. S. Salivahanan& N. S. Kumar: Electronic Devices and Circuits 3rd Edn
- 3. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.
- 4. M. Lotia, Modem Basic Electrical & House Wiring Servicing

Suggested OnlineLink:

- 1. MITOpenLearning-MassachusettsInstituteofTechnology,https://openlearning.mit.edu/
- 2. NationalProgrammeonTechnologyEnhancedLearning(NPTEL),https://www.youtube.com/use r/nptelhrd 3. SwayamPrabha - DTH Channel,https:// www.swayamprabha.gov.in/index.php/program/current_he/8 Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

CERT	IFICATE COURSE IN BASIC PHYSICS		
Programme	Certificate Course in Basic Physics	Year: I	Semester: II Paper-2
	Subject: Physics		
Course Cod	Course Title: Electricity and Magnetism		
Course Out	zomes:		
lifferent type S. Study Magnetization S. Study S. Under S. Under	estanding of Electric Field and Potential. Evaluation of Electric es of charge distributions. of Electric and Magnetic Fields in matter. Understand the cor- n and Electric Displacement Vector. of Steady and Varying electric currents. estanding of different aspects of alternating currents and its app estand the Magnetostatics, Lorentz Force and Energy stored in rehend the different aspects of Electromagnetic induction and	cept of polarizabili plications. magnetic Field.	ty,
Tou Montr	. 100	-	•
Max. Marks: 100 Min. Passing Ma External Exam: 75			arks: 33
	essment : 25		
Fotal No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
Unit	Торіс		No. of Lecture
Unit I	Electric field and potential		
	Coulomb law, Gauss' theory, its integral and differential forms, line integral of Electric field, Electric field and potential due to an arbitrary charge distribution. Electrostatic energy, energy stored in an Electric field. Electric field and potential due to long charged wire, Spherical shell, sphere, disc, dipole.		15
Unit II	Electric and Magnetic fields in Matter Moments of charge distributions, Polar and non-polar movector, electric displacement vector, three electric susceptibility and permittivity, polarizability, Clausius Magnetization, magnetic susceptibility, diamagnetic, ferromagnetic substances, Hysteresis and B-H curve, Lar Diamagnetism and paramagnetism, Weiss theory of ferromagnetic	vectors, dielectric s-Mossotti relation paramagnetic and ngevin's theories o	2 15 n
Unit II	Electric Currents (Steady and Varying)		
	Current density, Equation of Continuity, Ohm's law and electron Lorentz Drude theory, Wiedmann-Frenz law, Kirchhoff's Laws and their applications, Transient current, Growth and	-	10

Unit IV	Magnetostatics	t	10
	Lorentz force, Bio-Savert's law, Ampere's law, Application of Biot-Saver law, magnetic field due steady current in a long straight wire, Interaction between two wires, field due a Helmholtz coil, solenoid and current loop, magnetic vector potential, permeability, Energy stored in Magnetic field.		
Unit V	Electromagnetic Induction and Alternating Current Faraday's laws of induction, Lenz's law, Electromotive force, Measurement of magnetic field, Eddy current, Mutual inductance, Self-inductance. Impedance admittance and reactance, R-C, R-L and L-C circuits with alternating e.m.f. source, series and parallel L-C-R circuits, resonance and sharpness, Quality factor, Power in A. C. circuits, Choke coil.	,	10

Suggested Reading

- **1.** Edward M. Purcell : Electricity and Magnetism
- 2. J.H. Fewkes & J.Yarwood : Electricity & Magnetism, Vol. I
- 3. D C Tayal : Electricity and Magnetism ", Himalaya Publishing House Pvt. Ltd., 2019.
- 4. D.J.Griffiths : Introduction to Electrodynamics .
- 5. Lal and Ahmed : Electricity and Magnetism
- 6. H. K. Malik and A.K. Singh "Engineering Physics", McGraw Hill Education (India) Private Limited, 2018.
- **7.** Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 2", Pearson Education Limited, 2012.

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed semester I, theory paper-1

CERTIFICATE COURSE IN BASIC PHYSICS		
Programme: Certificate Course in Basic Physics	Year: I	Semester: II Practical (Lab)
Subject: Physics Practical (Lab)	L	
Course Code: Course Title: Demonstrative Aspects of Electricity & Magnetism	n (Practical)	

Course Outcomes: 1. Experimental physics has the most striking impact on the industry wherever the instruments are used to study and determine the electric and magnetic properties. **2.** Measurement precision and perfection is achieved through Lab Experiments. Credits: 02 **Core Compulsory** Max. Marks: 50 Min. Passing Marks: 17 Internal (Record File): 15 External **Practical** Exam: 20 External Viva Voce : 15 Total No. of Lectures-Tutorials-Practical (in hours per week): 0-0-4 Unit Topic No. of Lectures Lab Experiment List Frequency of A.C. Mains. 1. 2. Calibration of Voltmeter by potentiometer. 3. Calibration of ammeter by potentiometer. 4. Specific resistance determination. 5. Conversion of a Galvanometer into a Voltmeter. Conversion of a Galvanometer into Ammeter. 6. 60 7. Variation of magnetic field along the axis of a current carrying circular coil. 8. Comparison of capacities by Ballistic Galvanometer. 9. Determination of Ballistic Constant. 10. Electrochemical equivalent. 11. De Sauty's bridge- C1/C212. R1/R2 by potentiometer. 13. Study of R-C, L-C-R circuits. 14. Determination of self inductance, mutual inductance. 15. Magnetic field determination by search coil and ballistic galvanometer.

Suggested Readings:

- 1. M. Yadav, Practical Physics, Vol 1, KedarNath Ramnath Publication, 2023.
- 2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015. 4. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester I

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

CERTIFICATECOURSEINBASICPHYSICS				
Programme:Cert	tificate Course in Basic Physics	Year: I	Semester: II Vocational/Minor	
	Subject:Phys	sics		
Course Code:	CourseTitle: Basic Instru	mentation Skills -	II	
G 14 02				
Credits:03		Vocation (Experin training	nents/hands on	
Max.Marks:100		Min.Pas	singMarks:33	
ExternalExam:7	5			
InternalAssessm	ent:25			

Unit	Торіс	No. of Lecture
UnitI	Batteries and Maintenance: Types of Batteries, Primary Cell, Secondary Cell, Wet charged, Dry-charged, Low maintenance, Construction of Battery, Case Cover plates, Separator, Cells, Electrolyte, Principles of Batteries, Lead Acid battery, Electrochemical reaction, Measure the voltages of the given cells/battery using analog/ digital multimeter, Charge and discharge the battery through load resistor, Maintain the secondary cells, Measure the specific gravity of the electrolyte using hydrometer.	20
UnitII	Testing of Batteries: Testing Factor affecting charging, Cause of battery failure, diagnosis and testing, visual inspection, Heavy load test Professional, Test a battery and verify whether the battery is ready for use of needs recharging.	
UnitIII	itIII Soldering: Solders, flux and soldering technique. Different types of soldering guns related to Temperature and wattages, types of tips, Solder materials and their grading. Use of flux and other materials, Selection of soldering gun for specific requirement, Soldering and De-soldering stations and their specifications. Soldering/ Desoldering and Various Switches, Practice soldering on differeni electronic components, small transformer, Practice de-soldering	

SuggestedReading

- 1. B L Theraja: A text book in Electrical Technology
- 2. M G Say: Performance and design of AC machines
- 3. S. Salivahanan& N. S. Kumar: Electronic Devices and Circuits, , 3rd Edn

4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.

5. M. Lotia, Modern Basic Electrical & House Wiring Servicing

Suggested OnlineLink:

- 1. MIT Open Learning-Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning
- (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Minor/Elective (04 Credit, One from the list El 1)

Students having major in Physics will have to choose the elective/minor from sl. no. 1-4 only. Other faculty students (Arts/Commerce) have to choice sl. no. 1.

- 1. Elementary Physics-I
- 2. Numerical Methods
- 3. Computer Programming
- 4. Waves and Oscillations

	CERTIFICATE COURSE IN BASIC PHYSICS		
Programme: Co	ertificate Course in Basic Physics	Year: I	Semester: I/II
	Subject: Physics		
CourseCode:	CourseTitle: Elementary Physics	s-I	
Credits:04			/Minor(Experim on training)

Max.Marks:100Min.PassingMarks:33External Exam:75Internal Assessment:25

Unit	Торіс	No. o Lectur
Unit I	Basic Idea of Physics and it's uses in daily life, Electric charge, Conductors, Insulators and Semiconductors, Coulomb's law, Quantization and conservation of charge, Basic Idea of electric field	15
Unit II	Resistance, Resistance in Series and Parallel, Direct and Alternating Current, Color codes for Resistors, Household Circuits, Wiring in Houses, Importance of fuse, Power and Power Losses, Unit of power loss, Heating effect of electric current, Uses of heating effect of current.	15
Unit III	Transformers, Types of transformers, Step up transformer, Step down transformer Auto transformer, Central tape transformer, Wiring of transformer.	10
Unit IV	Short and open circuits, Shorts in series circuit, shorts in parallel circuit, Open in series circuit, Open in parallel circuit, Duality in series and parallel circuits.	10
Unit V	Ammeters- Voltmeters and their uses, Measurements of thickness, Diameter and depth by Vernier- calipers Screw gauge and Spherometer, Multimeter and its uses, Dynamometer and Wattmeter, Block diagram of basic CRO, Construction of CRT, Electron gun, electrostatic focusing and acceleration.	10

Suggested Reading:

1. Physics: Rowell and Herbert, Cambridge University Press,

2. Electrical Technology : B. L. Theraja, S. Chand & company.

Suggested Online Link:

 MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

CERTIFICATE COURSE IN BASIC PHYSICS

Programme: Certificate Course in Basic Physics

Year: I Semester: I/II

Subject: Physics

Course Code:

Course Title: Numerical Methods

Credits: 04		Minor/Elective
Max. Marks:	100	Min. Passing Marks: 33
External Exar	n: 75	
Internal Asses	ssment: 25	
Total No. of L	ectures-Tutorials-Practical (in	hours per week): 4-0-0
Unit	Торіс	No. of
		Lectures

Unit I	Ordinary Differential Equations Brief review of ordinary differential equations, Exact equations, Equations reducible to exact equations, Equations of the first order and higher degrees Clairaut's equation. Applications of ODEs in concerned engineering branch Linear differential equations with constant co-efficient, Complimentary functions and particular integral, Method of variation of parameters, Equations reducible to linear equations with constant co-efficient (Cauchy's and Legendre's linear equations), Initial and Boundary value problems Simultaneous linear equations with constant co-efficient, Applications of differential equations in concerned engineering branch.	15
Unit II	Partial Differential Equations Formulation of Partial Differential Equations (PDE), Solution of PDE, Linear PDE of First Order (Lagrange's Linear Equation), Non-linear Equation of Firs Order (Standard Forms), Charpit's Method, Homogeneous Linear Equations with Constant Coefficients, Non-homogeneous Linear Equations. Applications of PDE: Method of separation of variables, Solution of one dimensional wave and heat equation and two dimensional Laplace's equation.	15
Unit III	Transforms Theory Laplace Transform: Laplace Transforms of standard functions and their properties, Inverse Laplace Transforms, General Properties of inverse Laplace transforms and Convolution Theorem, Laplace Transforms of periodic functions, Dirac-delta Function, Heaviside's Unit Function, Solution of ODE	15
	and linear simultaneous differential equations using Laplace transforms Fourier Transform: Fourier integral representation, Fourier sine, cosine and complex transform, Finite Fourier Transforms and their applications. Z – Transforms: Z–Transforms & its properties, inversion of Z – transform and applications of Z – transform	
Unit IV	Probability and Statistics Review of probability, Conditional probability and sampling theorems, Discrete and Continuous Probability Distribution, Probability Mass & Probability Density Functions, Distribution function, Discrete and Continuous probability distributions, Binomial, Poisson and Normal distributions.	15

Suggested Reading

- 1. Advanced Engineering Mathematics by E. Kreyszig, John Wiley and Sons, NC, New York.
- 2. Differential Equations by S. L. Ross, John Wiley & Sons, New York.
- 3. An Introduction to Probability Theory & its Applications by W. Feller, Wiley.
- 4. Probability and Statistics for Engineers and Scientists by R.E. Walpole, S. L. Myers and K. Ye, Pearson.
- 5. Integral Transforms and Their Applications by Lokenath Dennath and Dambaru Bhatta, Chapman and Hall/CRC Press.

Suggested Online Link:

 MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

CERTIFICATE COURSE IN BASIC PHYSICS				
Programme: Certificate Course in Basic Physics Year: I Semester: I/II				
Subject: Physics				
Course Code: Course Title: Computer Programming				

Credits: 04 Minor/Elective			
Max. Marks: 100 Min. Passin External Exam: 75		g Marks: 33	
Internal Ass	essment: 25		
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
Unit	Торіс	No. of Lectures	
Unit I	Unit IProgramming FundamentalsIntroduction to computer, block diagram and organization of computer, number system and binary arithmetic, processing data, hardware, software, firmware, types of programming language -Machine language, Assembly level language, higher level language, source file, object file, translator-assembler, compiler, interpreter. Evolution and classification of programming languages.		
Unit IIProgramming TechniquesSteps in program development, algorithm, flowchart, pseudo code.C Language: 'C' character set, literals, keywords, identifiers, data types and size, variable declaration, expression, labels, statements, formatted input output statements, types of operators, data type conversion, mixed mode arithmetics, control structures.		15	

Unit III	Data Structures Storage classes, scope rules and visibility, arrays, pointers, dynamic storage allocation, structures and unions, self-referential structures. Relationship between pointers and arrays, dynamic arrays: Introduction to dynamic data structures linked lists, stack, and binary trees.	15
Unit IV	Functions and File Handling 'C' functions, library functions, parameter passing, recursion, 'C' files function for file handling, 'C' pre-processors and command line arguments macros and conditional compiler directives.	

Suggested Reading

- 1. C Programming Language by Briain W. Kenigham and Dennis Ritchie, Prentice Hall of India.
- 2. Programming with C by Byron Gottfried, Tata McGraw Hill.
- 3. The Complete Reference C by Herbert Schildt, Tata McGraw Hill.
- 4. Let us C by Yashwant Kanetkar, BPB Publication.
- 5. A Structured Programming Approach in C by B.A. Forouzan and R.F. Gilberg, Cengage Learning.

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd 3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

CERTIFICATE COURSE IN BASIC PHYSICS Programme: Certificate Course in Basic Physics Year: I Semester: I/II Subject: Physics Course Code: Course Title: Waves and Oscillations

Credits: 04Minor/ElectiveMax. Marks: 100Min. PassingExternal Exam: 75Marks: 33Internal Assessment: 25Marks: 4-0-0		
Unit	Topic	No. of Lectures
Unit I	 Analysis of wave motion Characteristics, Differential equation of a wave motion, principle of superposition, Interference, Beats, stationary waves, Energy of stationary waves. Wave velocity and group velocity, Fourier theorem, Fourier analysis of square triangular and saw-tooth waves. Energy density of plane acoustic waves Acoustic intensity, Measurement of acoustic intensity – the dB scale Characteristics and loudness of Musical sound, Acoustic impedance Reflection and transmission of acoustic waves. Acoustics of buildings, reverberation time. Sabine's formula, Principle of sonar system. 	
Unit II	Ultrasonics Classification of Sound waves, Ultrasonics, Quartz crystal and Piezo electric effect, Magnetostriction effect, Properties of Ultrasonic, Detection of ultrasonic waves, Determination of velocity of ultrasonic waves in liquid (Acoustic grating method). Application of Ultrasonics.	15
Unit III	Simple Harmonic Oscillations Periodic motion, SHM in mechanical systems, Energy of Simple harmonic oscillator, Superposition of SHM(s), Oscillations of two masses connected by a spring, Non-linear (An-harmonic) oscillator and its applications to simple pendulum. Applications of Simple harmonic motion in compound pendulum Torsional pendulum and LC circuit, Composition of two SHM(s) of different frequency ratio, Lissajous' figures for equal frequencies ratio and 2:1 frequencies ratio	15
Unit IV	Damped and Forced Harmonic Oscillations Damping force, Different cases for over, critical and under damping, Mechanical damped harmonic oscillators, Logarithmic decrement, Power Dissipation, Relaxation time & Quality Factor.	15

Forced oscillations, Mechanical driven harmonic oscillators, Transient and
steady state behavior, Power absorption, phenomenon of resonance, amplitude
resonance, velocity resonance, sharpness of resonance/Fidelity, Bandwidth and
quality factor.

Suggested Reading

- 1. R. Resnick and D. Hilliday: Physics Vol-I
- 2. D. S. Mathur: Mechanics
- 3. Brijlal and Subrahmanyam: Waves and Oscillations
- 4. B.S. Semwal and M.S.Panwar : Wave Phenomena and

Material Science

- 5. Berkeley Physics Course: Mechanics Vol-I
- 6. R. K. Ghose: The mathematics of waves an Vibrations
- 7. D. P. Khandelwal: Oscillations and Waves
- 8. I. I. Pain: Physics of Vibration

9. A. P. French: Vibrations and Waves Suggested Online Link:

 MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

DIPLOMA	IN APPLIED PHYSICS	
Programme: Diploma in Applied Physics Y		Year: II Semester: III Paper-I
	Subject: Physics	
Course Code:	Course Title: Thermodynamics and Statistic	cal Physics
Course Outcomes	;;	
1. Recognize	the difference between reversible and irreversible p	processes.
	l First and Second Law of Thermodynamics and con	1 12
	I the physical significance of thermo dynamical pot	
4. Compreher	nd the kinetic model of gases w.r.t. various gas laws	3.
5. Study the i	mplementations and limitations of fundamental rad	iation laws.
Credits: 04		Core
		Compulsory

x. Marks ternal Ex		Min. Passin Marks: 33
	f Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. Lectures6
Unit I	Basic concepts and First law of thermodynamics Thermodynamic Systems, Thermal equilibrium and Zeroth law of thermodynamics, Equation of state and First law of thermodynamics, Discussion of Heat and Work, Quasi-static Work; Reversible and Irreversible; Path Dependence; Heat Capacities Adiabatic Processes, Vander Wall equation	1
Unit II	Distinction between Joule, Joule- Thompson and Adiabatic expansion of a gas. Second law of Thermodynamics and Entropy Insufficiency of first law of thermodynamics, Condition of Reversibility, Carnot"s Engine and Carnot"s Cycle, Second law of thermodynamics, Carnot"s Theorem, Thermodynamic scale of temperature and its identity to perfect gas, scale of temperature. Entropy, Mathematical formulation of Second law of thermodynamics, Entropy of an ideal gas, T-S diagram and its applications, Evaluation of Entropy changes in simple cases, Third law of thermodynamics.	10
Unit III	Thermodynamic Relations Thermodynamic potentials, Maxwell''s equation from thermodynamic potentials, Some useful manipulations with partial derivatives (cooling in adiabatic processes and Adiabatic stretching of a wire), The Clausius-Clapeyron''s equations, Triple point, Applications of Maxwell''sthermo dynamical relations.	
Unit IV	Transport of Heat and Kinetic theory of Gases Black body radiation, Thermodynamics of radiations inside a hollow enclosure, Kirchoff's Laws, Derivation of Stefan Boltzmann Law, Wein's displacement law, Black body spectrum formulaearly attempts, Raleigh Jean's Law, Quantum theory of Radiation, Planck's formula for black body spectrum, Wien's law, Radiation as a photon gas. Degree of Freedom Law of Equipartition of Energy, Distributive law of velocities, Most Probable speed, Average and root mean square velocities.	
Unit V	Fundamentals of Statistical Mechanics: Probability and thermodynamic probability, postulates of statistical mechanics, macrostates and microstates equilibrium and fluctuation constraints, ensemble and average properties, phase space, □-space and gamma space, division of phase space into cells, Micro canonical, canonical and grand canonical ensembles, Entropy and probability, interpretation of second law of thermodynamics, Boltzmann canonical distribution law. Classical and Quantum statistics, Comparison of three statistics.	

Suggested Reading

^{1.} S. Loknathan : Thermodynamics, Heat and Statistical Physics 27

- 2. Sharma and K.K. Sarkar : Thermodynamics, and Statistical Physics
- 3. Brijlal and Subrahmanyam : Heat and Thermodynamics
- 4. Garg, Bansal and Ghose: Thermal Physics, McGraw Hill,2012.
- 5. M.W. Zemansky, R. Dittman, "Heat and Thermodynamics", McGraw Hill, 1997.
- 6. R. K Pathria, Statistical Mechanics, Elsevier
- 7. Meghnad Saha, B.N. Srivastava, "A Treatise on Heat", Indian Press, 1973 **Suggested Online Link:**

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students. Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed Certificate course in Basic Physics.

Programme: Diploma in Applied Physics		Year: II	Semester: III Practical	
				(Lab)
	Subject: Physics Practical (Lab)			
Course Code:	Course Title: Demonstrative Aspects of			
	Thermodynamics and Statistic	cal Physics		
	(Practical)			
Course Outcon	ies:			
1. Experimental	physics has the most striking impact on the i	ndustry wherever the	instrumer	ts are used to
study and det	ermine the thermal properties.			
2. Measurement	t precision and perfection is achieved through	Lab Experiments.		
Credits: 02		Core	e Compulsory	
Max. Marks: 50 Mir		Min.	n. Passing Marks:17	
	rd File): 15		C	
Internal (Recor				
Internal (Recor External Pra	actical Exam: 20			

Unit	Торіс	No. of Lectures
	Lab Experiment List	I
	 Lab Experiment List Thermal conductivity of a bad conductor by Lee's method. Mechanical equivalent of heat by Searle's method. Stefan's law Platinum resistance thermometer. Thermal conductivity of a good conductor by Searle's method. J by Callendar and Barnes method. Random throw- statistical method. Newton's law of cooling, sp. heat of Kerosene oil. Variation of thermos emf across two junctions of a thermocouple with temperature To show that deviation of probability of an event from theoretical values decreases with increase in the number of events (throuch coins and dices) To verify the laws of probability distribution and to verify laws of 	60
	 probability of throwing one coin, two coin and ten coins 12. Study of statistical distribution from the given data and to find most probable value, averge value and rms value 	

Suggested Readings:

- 1. M. Yadav, Practical Physics, Vol 2, KedarNath Ramnath Pubaws of lication, 2023.
- 2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 4. Indu Prakash: Practical Physics
- 5. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014. Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74 2.

Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Certificate course in Basic Physics Further

Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

	DIPLOMAINAPPLIEDPHYSICS		
Programme: <i>L</i>	Semester: III Vocational/Minor		
	Subject:Physics		
CourseCode	: CourseTitle: Basic Instrumentation Skills -III		
Credits:03 Vocational/Min			
Max.Marks:100 Min.PassingMa ExternalExam:75			
InternalAsses			
Total No.ofLe	ctures-Tutorials-Practical (in hours per week):3-0-0		
Unit	Торіс	No.of Lectures	
UnitI	Multimeter Principles of measurement of dc voltage and dc current, ac voltage, ac and resistance. Specifications of a multimeter and their significance Adv over conventional multimeter for voltage measurement with respect to impedance and sensitivity.	antage	

UnitII	Digital Multimeter Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universa counter/frequency counter, time-base stability, accuracy and resolution.	
UnitIII	Electronic Voltmeter Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter, AC millivoltmeter: Type of AC millivoltmeters, Block diagram ac milli -voltmeter, specifications and their significance.	

Suggested Reading Books

Recommended:

- 1. B L Theraja : A text book in Electrical Technology
- 2. M G Say : Performance and design of AC machines
- 3. S. Sa1ivahanan& N. S.Kumar: Electronic Devices and Circuits, , 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.

Suggested equivalent online courses: This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed Certificate course in Basic Physics and Passed Semester III.

Programme: Diploma in Applied Physics Year: II Semeste Paper-I			
Subj	ect: Physics		
Course Code: Course Title: Optics			
Course Outcomes:			
1. Study of Fermat's Principle of Extremum Path an reflection and refraction of light.	nd understand fundamental physics behind		
2. Understand the theory of image formation by an	optical system.		
3. Study of different types of optical Aberration san	nd techniques for the irreduction.		
4. Study of different types of optical instruments us	ed in industry and research.		
Credits:04	Core Compulsory		
Max.Marks:100	Min.Passing Marks:33		
External Exam:75			
Internal Assessment:25			

Unit	Торіс	No. of Lectures
Unit I	Geometrical Optics: Fermat's Principle: Principle of extremum path and its application to deduce laws of reflection and refraction, Gauss's general theory of image formation: Coaxial symmetrical system, Cardinal points of an optical system, general relationship, thick lens and lens combinations.	
Unit II	Optical Instruments: Entrance and exit pupils, need for a multiple lens eyepiece, Ramsden's, Huygen's and Gaussian eyepieces, Astronomical refracting telescope, Spectrometer, Aberrations in images: Chromatic aberrations, achromatic combination of lenses in contact and separated lenses, Monochromatic aberrations and their reduction: aspherical mirrors and Schmidt corrector plates, aplantic points, oil immersion objectives meniscus lens.	
Unit III	Interference of Light: The principle of superposition, Two slit interference, coherence, Division of wave front and amplitude, Optical path retardations lateral shift of fringes, Fresnel biprism, Interference with multiple reflection, Thin films, Application for precision measurements, Haidinger fringes, Fringes of equal thickness and equal inclination.	
Unit IV	*	10
Unit V	Polarization of Light: Transverse nature of light waves, Concept of Plane polarized light – production and analysis, Malus law, Brewster's law, Nicol prism, Circular and elliptical polarization, Double refraction.	10

Suggested Reading

- 1. Fundamentals of Optics, F A Jenkins and H E White, 1976, McGraw-Hill
- 2. Principles of Optics, B. K. Mathur, 1995, Gopal Printing
- 3. Fundamentals of Optics, H. R. Gulati and D.R. Khanna, 1991, R. Chand Publication
- 4. A Textbook of Optics, N. Subramanyam and Brijlal.
- 5. Optics and Atomic Physics, D. P. Khandelwal.
- 6. Physical Optics, A. K. Ghatak.
- 7. Optics, Eugene Hecht, Pearson Publishers.
- 8. Optics, Satya Prakash. Suggested OnlineLink:
- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8 Suggested equivalent online courses:

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

Course Prerequisites: Passed Certificate course in Basic Physics and Passed Semester III.

DIPLOMA IN APPLIED PHYSICS Programme: Diploma in Applied Physics Year: II Semester: IV Practical (Lab) Subject: Physics Practical (Lab) CourseCode: Course Title: Demonstrative Aspects of Optics (Practical) Course Outcomes: 1. Experimental physics has the most striking impact on the industry wherever the instruments are used to study and determine the optical properties. 2. Measurement precision and perfection is achieved through Lab Experiments. Credits: 02 Core Compulsory

Max. Marks: 50 Internal (Record F External Practic External Viva Voce Tatal Na. of Lastur	ile): 15 cal Exam: 20 e : 15	n. Passing Marks:17
Unit	res-Tutorials-Practical (in hours per week): 0-0-4 Topic	No. of Lectures
	Lab Experiment List	
 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 	 Nodal slide assembly, Location of cardinal points of lens s Newton's formula. Dispersive power of prism. Resolving power of a telescope. To determine the Resolving Power of a Prism. To verify the Cauchy's dispersion formula. To find the thickness of the wire using optical bench. To determine the thickness of mica-sheet by using Biprism Newtons ring experiment To determine specific rotation of cane sugar using polarimeter Diffraction grating Malus Law 	bystem. 60

Suggested Readings:

- 1. M. Yadav, Practical Physics, Vol 2, KedarNath Ramnath Publication, 2023.
- 2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 4. Indu Prakash, Practical Physics
- 5. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows: **Record File (15 marks)**

PREREQUISITE: Passed Certificate course in Basic Physics and Semester III.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

	DIPLOMAINAPPLIEDPHYSICS	5		
		ster: IV ional/Minor		
	Subject:Physics			
CourseCode	CourseTitle: Basic Instrumentation Skills -IV	r		
Credits:03		Vocational on training	-	nents/hands
Max.Marks:1 External Exa		Min. Passin	ng Marks	:33
Internal Asse				
TotalNo.ofLe	ctures-Tutorials-Practical (in hours per week):3-0-0			
Unit	Topic			No. of Lectures
UnitI	Cathode Ray Oscilloscope: Block diagram of basic Cl CRT, Electron gun, electrostatic focusing and accele only— no mathematical treatment), brief discussion of visual persistence & chemical composition. Tim synchronization. Front panel controls. Specifications of significance. Use of CRO for the measurement of frequency, time period. Special features of dual trace, in oscilloscope, probes. Digital storage Oscilloscope: Block diagram and princip	ration (Exp on screen ph e base op of a CRO a voltage (dc troduction to	lanation osphor, oeration, nd their and ac o digital	20
UnitII	Signal and pulse Generators Block diagram, explanation and specifications of lo generator and pulse generator. Brief idea for testing, spe Distortion factor meter, wave analysis.	w frequency		10
UnitIII	Impedance Bridges Block diagram of bridge. Working principles of basic (bal Specifications of RLC bridge, Block diagram and work Qmeter, Digital LCR bridges.	-	-	15

Suggested Reading Books

Recommended:

- 1. B L Theraja: A text book in Electrical Technology
- 2. M G Say: Performance and design of AC machines
- 3. S. Sa1ivahanan& N. S. Kumar: Electronic Devices and Circuits, 3rd Edn
- 4. Shashi Bhushan Sinha, Handbook of Repair and Maintenance of Domestic Electronics Appliances hand book.

Suggested OnlineLink:

 $1. \ MITOpenLearning-Massachusetts Institute of Technology, https://openlearning.mit.edu/$

- $2. \ National Programme on Technology Enhanced Learning (NPTEL), htt$
- ps://www.youtube.com/user/nptelhrd
- 3. SwayamPrabha DTH

Students having major in Physics will have to choose the elective/minor from sl. no. 1-6. Other faculty students (Arts/Commerce) have to choice sl. no. 1.

- 1. Elementary Physics-II
- 2. Elements of Modern Physics
- **3.** Electromagnetic Theory
- 4. Optoelectronic Devices
- 5. Opto-Electronics and Laser Instrumentation
- 6. Classical Dynamics

DIPLOMA	IN APPLIED PHYSICS		
Programme: <i>Dip</i>	loma in Applied Physics	Year: II	Semester: III/IV
	Subject: Physics	·	•
Course Code:	Course Title: Elementary Physics-II		

Credits: 04	Minor/Elective	
Max. Marks: External Exa Internal Asse	m: 75	rks: 33
Total No. of L	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Semiconductors- P- type, n-type, Semiconductor materials, pn diode, Depletion region, Working of pn diode, characteristics, Diode as a rectifier, Transistors PNP and NPN and their working.	15
Unit II	OPTICS- Mirrors and lenses, image formation, lens formula, Ramsden and Huygens eyepieces.	10
Unit III	Newton's first and Second Law, Concept of force and mass, Some particular forces, Newton's third law, Friction, Properties of friction.	10
Unit IV	Rectilinear motion, laws of motion, Work and energy, conservation of energy, law of gravitation and Kepler's law (not derivation).	10
Unit V	Thermodynamics systems, Thermal equilibrium, Zeroth law, work done, first law of thermodynamics, Internal energy, enthalpy.	15

Suggested Reading:

- 1- Physics: Resnick and Halliday, John Wiley, New York.
- 2- Mechanics: D S Mathur, S Chand & company.
- 3- Semiconductor materials and devices, M S Tyagi, John Wiley, New York.
 4- Basic Electronics: B L Theraja, S Chand & company. Suggested Online Link:
 - 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/

Learning Technology Enhanced 2. National Programme on (NPTEL), _ https://www.youtube.com/user/nptelhrd 3. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8 Suggested Continuous **Evaluation (25 Marks):**

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

DIPLOMA IN APPLIED PHYSICS

Programme: <i>Dip</i>	loma in Applied Physics	Year: II	Semester: III/IV
	Subject: Physics		
Course Code:	Course Title: Elements of Modern Phy	sics	

Credits: 04	Minor/Electiv	/e
	0	Marks: 33
Unit	Topic	No. of Lectures
Unit I	Quantum Mechanics and Bohr Atom Model Planck's quantum, Planck's constant and light as a collection of photons: Photoelectric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Rutherford model, Bohr's model, quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra.	15
Unit II	Quantum Systems and Heisenberg Uncertainty Principle Position measurement; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy- time uncertainty principle.	15
Unit III	Matter Waves and Schrödinger Equation Two slit interference experiment with photons, atoms & particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of wavefunction, probabilities and normalization; Probability and probability current densities in one dimension.	15
Unit IV	Motion in a Potential Well One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical tunnelling in one dimension - across a step potential and across a rectangular potential barrier.	15

Suggested Reading:

1. Arthur Beiser: Concepts of Modern Physics

- 2. J. R. Taylor, C.D. Zafiratos: Modern Physics
- 3. Thomas A. Moore: Six Ideas that Shaped Physics: Particle Behave like Waves
- 4. Berkeley Physics Course: Vol.4 (Quantum Physics)
- 5. Serway, Moses, and Moyer: Modern Physics

- 6. G. Kaur and G.R. Pickrell: Modern Physics
- 7. B.L. Flint and H.T. Worsnop: Advanced Practical Physics for Students

8. Michael Nelson and Jon M. Ogbor: Advanced level Physics Practicals, , 4th Edition

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd 3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

DIPLOMA	IN APPLIED PHYSICS			
Programme: Diploma in Applied PhysicsYear: IISemester:III/IV				
	Subject: Ph	ysics		
Course Code:	Course Title: Electr	omagnetic Theory		

Credits: 04	Fredits: 04 Minor/Elective	
Max. Marks: 100 Min. Passing N External Exam: 75		Marks: 25
Internal Ass		
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Maxwell's Equations Review of electrostatic and electromagnetic equations, their differential and integral forms, Maxwell's equations. Displacement Current. Wave Equations Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density.	15
Unit II EM Wave Propagation in Unbounded Media Plane EM waves through vacuum and isotropic dielectric medium transverse, nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skir depth.		15

Unit III	EM Wave in Bounded Media Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric mediaLaws of Reflection and Refraction, Fresnel's Formulae, Brewster's law. Total internal reflection,	15
Unit IV	Polarization of Electromagnetic WavesDescription of Linear, Circular and Elliptical Polarization. Uniaxial andBiaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction.Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinaryrefractive indices.	15

Suggested Reading

1. D.J. Griffiths: Introduction to Electrodynamics

- 2. M.N.O. Sadiku: Elements of Electromagnetics
- 3. T.L. Chow: Introduction to Electromagnetic Theory
- **4.** M.A.W. Miah: Fundamentals of Electromagnetics
- 5. R.S. Kshetrimayun: Electromagnetic field Theory
- 6. Willian H. Hayt: Engineering Electromagnetic

7. J.A. Edminster: Electromagnetics, Schaum Series, 2006

- **8.** B.L. Flint and H.T. Worsnop: Advanced Practical Physics for Students **9.** Michael Nelson and J. M. Ogborn: Advanced level Physics Practicals **Suggested Online Link:**
- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL),

https://www.youtube.com/user/nptelhrd 3. Swayam Prabha - DTH Channel,

https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

DIPLOMA IN APPLIED PHYSICS Year: II Semester: III/IV Programme: Diploma in Applied Physics Year: II Semester: III/IV Subject: Physics Course Code: Course Title: Optoelectronic Devices Credits: 04 Minor/Elective

Credits: 04	redits: 04 Minor/Elective		
Max. Marks: 100Min. Passing MarkExternal Exam: 75Internal Assessment: 25Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0			s: 33
Unit	Topic		No. of Lectures
Unit I	 Properties of semiconductors Electron and photon distribution: density of states, effective mass structure, effect of temperature and pressure on band gap, receptocesses. Basics of semiconductor optics: Dual nature of light, band structure semiconductors, light absorption and emission, photolu electroluminescence, radioactive and non-radiative recombination, was 	s and band ombination e of various minescence	15
Unit IISemiconductor light-emitting diodes and Semiconductor lasersStructure and types of LEDs and their characteristics, guided waves and optica modes, optical gain, confinement factor, internal and external efficiency semiconductor heterojunctions, double hetero structure LEDs.Semiconductor lasers: Spontaneous and stimulated emission, principles of a laser diode, threshold current, effect of temperature, design of an edge-emitting diode emission spectrum of a laser diode, quantum wells, quantum-well laser diodes.		efficiency es of a laser itting diode	15
Unit III	Semiconductor light modulators Modulating light (direct modulation of laser diodes, electro-optic acousto-optic modulation), isolating light (magneto-optic isolators optical nonlinearity (frequency conversion, switching)		15
Unit IV	Semiconductor light detectors I-V characteristics of a p-n diode under illumination, photov photoconductive modes, load line, photocells and photodiodes, pi-n p responsivity, noise and sensitivity, photodiode materials, electric c photodiodes, solar cells.	hotodiodes	15

Suggested Reading:

- 1. Semiconductor Optoelectronics: Physics and Technology, Jasprit Singh, McGraw Hill Companies, ISBN 0070576378
- 2. Optoelectronics, E. Rosencher and B. Vinter, Cambridge Univ. Press, ISBN 052177813.
- 3. Photonic Devices, J. Liu, Cambridge Univ. Press, ISBN 0521551951.
- 4. Semiconductor Optoelectronic Devices 2nd Edition", P. Bhattacharya, Prentice Hall, ISBN 0134956567.
- 5. Physics of Semiconductor Devices, by S. M. Size (2nd Edition, Wiley, New York, 1981)

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd -Channel, 3. Swayam Prabha DTH https://www.swayamprabha.gov.in/index.php/program/current_he/8 Suggested Continuous

Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

DIPLOMA IN APPLIED PHYSICS

Programme: <i>Diploi</i>	na in Applied Physics	Year: II	Semester: III/IV
	Subject: Physics		
Course Code:	Course Title: Opto-Electronics and Laser I	nstrumentation	

Credits: 04	dits: 04 Minor/Elective	
Max. Marks	: 100 Min. Passing Mar	rks: 33
External Exa	am: 75	
Internal Ass	essment: 25	
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
Unit	Торіс	No. of
		Lectures
Unit I	Introduction	
	Characteristics of optical radiation, luminescence, irradiance – Optical Sources – Photo Detectors – Opto-couplers and their application in analog and digit devices. Optical Fiber Fundamentals – modes, types of optical fibers – fibe coupling – Fiber optic sensors for common industrial parameters – V, I pressure temperature – IR sources and detectors – fiber optic gyroscope.	a 15

Unit II	Characteristics of LASERS Einstein's equations – population inversion two, three and four level system Laser rate equation, properties – modes – Resonator configurations – Q switching and mode locking, cavity dumping, single frequency operation – Types of Lasers Applications – Lasers for measurement of distance and length velocity, acceleration, atmospheric effects, pollutants.	15
Unit III	Applications Lasers for measurement of distance and length, velocity, acceleration atmospheric effects, pollutants. Material processing applications – Laser heating melting, scribing, splicing, welding and trimming of materials, removal and vaporization.	
Unit IV	Holographic Interferometry and Applications Holography for non-destructive testing – medical applications – lasers and tissue interaction -surgery – dermatology.	15

Suggested Reading

- 1. Wilson and Hawkes, "Opto Electronics-An Introduction", Third Edition, Pearson Education, 1998.
- 2. John Ready, "Industrial Applications of Lasers", Second Edition, Academic Press, 1997.
- Bhattacharya P, "Semiconductor Optoelectronics", Second Edition, Pearson Education, 1998.
- 4. Djafar K. Mynbaev, Lowell L. Scheiner, "Fiber-Optic Communications Technology", First Edition, Prentice Hall of India Pvt. Limited, 2000.
- 5. R. P. Khare, "Fiber Optics and Optoelectronics", Oxford Press, 2004.

Suggested Online Link:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Swayam Prabha _ DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8 Suggested Continuous **Evaluation (25 Marks):**

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

DIPLOMA IN APPLIED PHYSICS

Programme: Diploma in Applied Physics	Year: II	Semester:
		III/IV

Subject: Physics

Course Code:

Course Title: Classical Dynamics

Credits: 04		Minor/Elective		
Max. Marks: 100Min. Passing MExternal Exam: 75Internal Assessment:25Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0			Iarks: 25	
Unit	Topic		No. of Lectures	
Unit I	Classical Mechanics of Point Particles Review of Newtonian Mechanics; Generalized coordinate Hamilton's principle, Lagrangian and the Euler-Lagra onedimensional Simple Harmonic Oscillations and falling gravity; applications to simple systems such as coupled osci momenta & Hamiltonian. Hamilton's equations of motio Hamiltonian for a harmonic oscillator, particle in a central for	ange equations. body in uniform illators Canonica n. Applications:	15	
Unit II	Small Amplitude Oscillations Minima of potential energy and points of stable equilibrium, potential energy around a minimum, small amplitude oscill minimum, normal modes of oscillations example of N i connected in a linear fashion to (N -1) - identical springs.	ations about the	15	
Unit IIISpecial Theory of Relativity Postulates of Special Theory of Relativity. Lorentz Transformations Minkowski space. The invariant interval, light cone and world lines. Spacetime diagrams. Time-dilation, length contraction and twin paradox. Fourvectors space-like, time-like and light-like. Four-velocity and acceleration Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler effect from a four-vector perspective. Concept of fourforce. Conservation of four-momentum. Relativistic kinematics. Application to two-body decay of ar unstable particle.		15		
Unit IV	Fluid Dynamics Density and pressure in a fluid, an element of fluid and its ve equation and mass conservation, stream-lined motion, Poiseuille's equation for flow of a liquid through a pipe, Navi	laminar flow.	15	
	equation, qualitative description of turbulence, Reynolds physics of fluids: Definition of a fluid- shear stress; Fluid, pro thermal conductivity, mass diffusivity, other fluid properties state; Flow visualization - streamlines, pathlines, Streaklines	opertiesviscosity.		

Suggested Reading

- 1. H. Goldstein: Classical Mechanics
- 2. N.C. Rana & P. S. Jog: Classical Mechanics
- 3. Landau and Lifshitz: Mechanics
- 4. Sommerfeld: Mechanics
- 5. Whittaker: Analytical Dynamics of Particles and Rigid Bodies
- 6. Raychaudhuri: Classical Mechanics

Suggested Online Link:

 MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/
 National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Swayam Prabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

DEGREE I	N APPLIED PHYSICS			
Programme: Deg	ree in Applied Physics	Year:III	Semester:	V
			Paper I	
	Subject: Physics			
CourseCode:	CourseTitle: Solid State Physics			

Credits:04	Core/Compulsory	
Max.Marks:1 ExternalExar InternalAsses	n:75	s:33
	ctures-Tutorials-Practical(inhoursperweek):4-0-0	
Unit	Торіс	No. of Lectures
Unit I	 Unit I Crystal Structure Amorphous and Crystalline Materials. Lattice and Basis. Types of Lattices. Bravais lattices, Unit Cell. Primitive and non-primitive lattice, Symmetry elements, point group and space group, Simple structure of Sodium chloride (fcc), Cesium chloride (bcc), hcp, packing fraction of sc, fcc, bcc and hcp, Miller Indices. 	
Unit II Reciprocal Lattice: Reciprocal lattice, Brillouin Zones. Reciprocal lattice and Brillouin Zone of sc, fcc and bcc structure, Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor. Extinction conditions of diffraction for sc, bcc and fcc lattice, Experimental methods of crystal structure determination-Laue, single crystal and powder method.		15
Unit IIIElementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T3 law		10
Unit IV	Crystal Binding and Elastic Properties: Ionic, covalent, metallic and hydrogen bond, Analysis of stress and strain, Elastic compliance and stiffness constant, elastic constant for cubic crystal, Elastic waves and velocity in cubic crystal with example of 100 direction, Experimental determination of elastic constants	10

Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia – and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss	15

50

Reference Books:

- Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
- Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India
- Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- Solid State Physics, Neil W. Ashcroft and N. David Mermin, 1976, Cengage Learning
- Solid-state Physics, H.Ibach and H Luth, 2009, Springer
- Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- Solid State Physics, M.A. Wahab, 2011, Narosa Publications
- NPTEL (http://nptel.ac.in)
- Virtual Labs (http://www.vlab.co.in)

Suggested OnlineLink:

- 1. MITOpenLearning-MassachusettsInstituteofTechnology,https://openlearning.mit.edu/
- 2. NationalProgrammeonTechnologyEnhancedLearning(NPTEL),htt

ps://www.youtube.com/user/nptelhrd

3. SwayamPrabha - DTH

Channel, https://www.swayamprabha.gov.in/index.php/program/curr ent he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5) CoursePrerequisites:

Passed Semester IV.

8		Semester: V Practical (Lab)
	Subject: Physics Practical (Lab)	
Course Co	de: Course Title: Demonstrative Aspects of Solid State	
	Physics (Practical)	
Course Out 1. To unders	comes: tand the magnetic properties of materials.	
2. To measu	re the band gap of semiconductor.	
	r with SCR & UJT.	
4. To unders	tand the characteristics of light emitting diode.	
Credits: 02	Core Compulso	ory
External	x: 50 Min. Passing M cord File): 15 Practical Exam: 20 va Voce : 15	Iarks:17
	Lectures-Tutorials-Practical (in hours per week): 0-0-4	
Unit	Торіс	No. of Lectures
	Lab Experiment List	
	Lab Experiment Eist	

Suggested Readings:

- 1. M. Yadav, Practical Physics, Vol 3, KedarNath Ramnath Publication, 2023.
- 2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 4. Indu Prakash: Practical Physics 5. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

DEGREE IN SCIENCE

Programme: *Degree in Science*

Year: III Semester: V Paper-II

Subject: Physics

Course Code: Course Title: Basic Electronics

Course Outcomes:

- 1. Study of different Network Theorems for simplifying complicated electronics circuits.
- 2. Study of Regulated Power Supply. Understand different types of Rectifiers, Filters and Voltage Regulator.
- 3. Study of different types of special diodes and their applications
- 4. Study of Transistors and their applications in different types of Amplifiers.

Credits: 04	Core Compulsory
Max. Marks: 100	Min. Passing Marks: 33
External Exam: 75	
Internal Exam: 25	

Total No. of Lectures-Tutorials-Practical (in hours per week): 4-0-0

Unit	Торіс	No. of
		Lectures
UnitI	Network Theorems: Constant voltage and constant current source, Conversion of voltage source into current source and vice-versa, Superposition theorem, Thevenin's theorem and procedure for finding Thevenin equivalent circuit, Norton's theorem and procedure for finding Norton equivalent circuit, Reciprocity theorem, maximum power transfer theorem, Applications of network theorems	7
UnitII	Semiconductor Diodes: Intrinsic and extrinsic semiconductors, P and N type semiconductors, Barrier formation in PN junction diode, qualitative idea of current flow mechanism in forward and reverse biased diode, PN junction and its characteristics, Static and dynamic resistance, Special diodes: Tunneling effect (Tunnel diode), Zener diode, Varactor diode, Point contact diode, V-I characteristic of these diodes, Principle and structure of Opto-electronic devices: LED, Photodiode, Solar cell.	15

UnitIII	Power Supplies:	8
	Block diagram of power supply (regulated and unregulated), Diode as a	
	rectifier: Half and Full wave rectifiers, Bridge rectifiers, Peak inverse voltage,	
	Efficiency, Ripple factor, Filters: Low pass and High pass filters, Band pass	
	and Band stop filters, L and π – filters (Series inductor, Shunt capacitor, LC,	
	CLC filters), Zener diode as a voltage regulator.	
UnitI IV	Transistors	15
	N-P-N and P-N-P transistors, Transistor currents, Characteristics of CB, CE and CC,	
	Current gains α , β and \Box , Relations between α , β and \Box , Basic CE amplifier circuit,	
	Load Line analysis of transistors, DC Load line and Q-point, performance of	
	transistor amplifier in CE mode: Input resistance, Output resistance, Effective collector	
	load, Current, Voltage and Power gains, Active, Cutoff, and Saturation regions, Basic	
	Idea of FET, MOSFET, & UJT.	
UnitI V	Transistor Amplifiers:	15
	Transistor biasing: Needs and requirements, Stability factor, Fixed-bias circuit,	
	Collector to base bias circuit, Bias circuit with emitter resistor, Voltage divider	
	biasing circuit, Single-stage transistor amplifiers, Common base (CB), Common	
	emitter (CE) and Common collector (CC) amplifier, Comparison of a amplifier	
	configurations. Amplifier classification based on biasing condition, Basic Idea	
	of Power amplifiers (Class A, Push Pull amplifier, Class B and Class C), RC-	
	coupled two stage amplifier and its frequency response.	
ggestedRea	ding	

- 1. M. K Baagde, S. P. Singh and Kamal Singh: Elements of Electronics
- 2. B. L. Theraja: Basic Electronics
- 3. V. K. Mehta: Elements of Electronics
- 4. J. D. Ryder: Networks, Lines and Fields
- 5. J. D. Ryder: Electronic Fundamentals and Applications.
- 6. Millman and Halkias: Integrated Electronics

Suggested OnlineLink:

- 4. MITOpenLearning-MassachusettsInstituteofTechnology,https://openlearning.mit.edu/
 - 5. NationalProgrammeonTechnologyEnhancedLearning(NPTEL),htt
 - ps://www.youtube.com/user/nptelhrd
- 6. SwayamPrabha DTH

Channel, https://www.swayamprabha.gov.in/index.php/program/curr

ent_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation(25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5) Course

Prerequisites: Passed SemesterIV.

	Degree in Science	Year: III	I Semester: V Practical (Lab)
	Subject: Physics Practical (Lab)		
Course Cod	le: Course Title: Demonstrative Aspects of Basic Electron (Practical)	ics	
Course Outc	comes:		
L. Experi	imental physics has the most striking impact on the industry	wherever the in	struments are us
o study the E	Electronics and its application in industry and research.		
2. Measu	rement precision and perfection is achieved through Lab Ex	xperiments.	
Credits: 02		Core Comp	ulsory
Max. Marks	: 50	Min. Passin	g Marks:17
Internal (Re	cord File): 15		-
	Practical Exam: 20		
External Viv			
	Lectures-Tutorials-Practical (in hours per week): 0-0-4		T
Unit	Торіс		No. of
			Lectures
		4	
	Lab Experiment List	t	
	1. To study characteristics of R-C coupled Amplifier with		
	 To study characteristics of R-C coupled Amplifier with feedback. 	h and without	60
	 To study characteristics of R-C coupled Amplifier with feedback. To study the characteristics of integrating and different 	h and without	60
	 To study characteristics of R-C coupled Amplifier with feedback. 	h and without	60
	 To study characteristics of R-C coupled Amplifier with feedback. To study the characteristics of integrating and different 3. To draw the characteristics of P-N junction diode. 	h and without	60
	 To study characteristics of R-C coupled Amplifier with feedback. To study the characteristics of integrating and different To draw the characteristics of P-N junction diode. To draw the characteristics of PNP and NPN junction to the characteristics of PNP and PNP	h and without	60
	 To study characteristics of R-C coupled Amplifier with feedback. To study the characteristics of integrating and different 3. To draw the characteristics of P-N junction diode. To draw the characteristics of PNP and NPN junction to 5. Measurements of h-parameters of a transistor. 	h and without	60
	 To study characteristics of R-C coupled Amplifier with feedback. To study the characteristics of integrating and different To draw the characteristics of P-N junction diode. To draw the characteristics of PNP and NPN junction to 5. Measurements of h-parameters of a transistor. Study of different types of Rectifiers and Filters. Verification of Network theorems. Child Langmuir law. 	h and without	60
	 To study characteristics of R-C coupled Amplifier with feedback. To study the characteristics of integrating and different To draw the characteristics of P-N junction diode. To draw the characteristics of PNP and NPN junction to Seasurements of h-parameters of a transistor. Study of different types of Rectifiers and Filters. Verification of Network theorems. 	h and without	60
	 To study characteristics of R-C coupled Amplifier with feedback. To study the characteristics of integrating and different To draw the characteristics of P-N junction diode. To draw the characteristics of PNP and NPN junction to 5. Measurements of h-parameters of a transistor. Study of different types of Rectifiers and Filters. Verification of Network theorems. Child Langmuir law. 	h and without tiating circuit. transistor.	
	 To study characteristics of R-C coupled Amplifier with feedback. To study the characteristics of integrating and different To draw the characteristics of P-N junction diode. To draw the characteristics of PNP and NPN junction to Measurements of h-parameters of a transistor. Study of different types of Rectifiers and Filters. Verification of Network theorems. Child Langmuir law. Study of power supply (Ripple factor). Study of Zener diode and regulation (taking different state) 	h and without tiating circuit. transistor.	

Suggested Readings:

- 1. M. Yadav, Practical Physics, Vol 3, KedarNath Ramnath Publication, 2023.
- 2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 4. Indu Prakash: Practical Physics 5. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

3. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74 4. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

DEGREE IN APPLIED PHYSICS

Programme:	Degree in Applied Physics Year:III Seme Pape	
	Subject: Physics	
Course Code	Course Title: Modern Physics & Elementary Quantum Mechanics	
Credits:04	Core Compulsor	y
Max. Marks:	8	rks:33
External Exa Internal Asse		
	Lectures-Tutorials-Practical (in hours per week):4-0-0	
Unit	Торіс	No. of Lectures
Unit I	Thomson model, Rutherford model, Bohr model and spectra of hydrogen atoms Shortcomings of these models, Bohr-Sommerfeld's model, Stern-Gerlac Experiment, Bohr magneton, Larmor's precession, Vector atom model, Spatia quantization and electron spin.	h
Unit II	Optical spectra and spectral notations, L-S and J-J coupling, selection rules an intensity rules, Explanation of fine structure of sodium D line, Normal Zeema effect, X-ray spectra (Characteristic and continuous), Moseley's law.	
Unit III	Origin of Quantum theory, Failure of Classical Physics to explain the phenomen such as Black body spectrum, Photoelectric effect, Characteristics and Einstein' explanation, Planck's quantum hypothesis, Planck's constant and light as collection of photons; Compton scattering	s 10
Unit IV	De Broglie hypothesis of matter waves and De Broglie wavelength DavissonGermer experiment, Position measurement- gamma ray microscop thought experiment; Wave-particle duality, Heisenberg uncertaint principleimpossibility of a particle following a trajectory; Estimating minimur energy of a confined particle using uncertainty principle; Energy-time uncertaint principle.	e y n
Unit V	Schrodinger's equation (Time independent and Time dependent), Postulates of Quantum Mechanics, Properties of Wave Function, Physical interpretation of Wave Function, Probability and probability current densities in three dimensions Conditions for Physical acceptability of Wave Functions, Normalization Eigenvalues and Eigenfunctions, Operator, position, momentum and Energ operators; Expectation values, Wave Function of a Free Particle.	f 15 ;

SuggestedReading

- 1. Concepts of Modern Physics, Arthur Beiser, 2009, McGraw-Hill.
- 2. Modern Physics, John R. Taylor, Chris D. Zafiratos, Michael A .Dubson,2009, PHI Learning.
- 3. Six Ideas that Shaped Physics: Particle Behave like Waves, Thomas A. Moore, 2003, McGraw Hill.

- 4. Modern Physics, R. A. Serway, C. J. Moses, and C. A. Moyer, 2005, Cengage Learning.
- 5. A Text book of Quantum Mechanics, P. M. Mathews & K. Venkatesan, 2nd Ed., 2010, McGraw Hill
- 6. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2ndEdn., 2002, Wiley.
- 7. Quantum Mechanics, Leonard I. Schiff, 3rdEdn. 2010, Tata McGraw Hill.
- 8. Quantum Mechanics, G. Aruldhas, 2ndEdn. 2002, PHI Learning of India.

Suggested OnlineLink:

- 4. MITOpenLearning-MassachusettsInstituteofTechnology,https://openlearning.mit.edu/
- $5. \ National Programme on Technology Enhanced Learning (NPTEL), htt$

ps://www.youtube.com/user/nptelhrd

6. SwayamPrabha-

DTHChannel,https://www.swayamprabha.gov.in/index.php/progra m/current he/8

SuggestedContinuousEvaluation(25Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5)

DEGREE IN SCINCE

Programme: <i>De</i>	gree in Science	Year: III	Semester: VI Practical (Lab)
	Subject: Physics Practical (Lab)		
Course Code:	Course Title: Demonstrative Modern Phys.	ics &	
	Elementary Quantum Mecha	nics	
	(Practical)		
Course Outcome	es:		
1	ntal physics has the most striking impact on t determine the modern physics concepts.	he industry wherever the	instruments are
5	nent precision and perfection is achieved thro	ugh Lab Experiments.	
	-		
Credits: 02		Core Con	npulsory
Max. Marks: 50		Min. Pass	ing Marks:17
Internal (Record	l File): 15		-

External Viva Voce : 15

Total No. of Lectures-Tutorials-Practical (in hours per week): 0-0-4

Unit	Торіс	No. of Lectures
	Lab Experiment List	
	1. Frank-Hertz Experiment.	
	2. Determination of 'h' Planck's constant by Photoelectric effect.	
	3. 'e/m' by Thomson method.	
	4. 'e/m' Magnetron method.	60
	5. 'e/m' Helical method	
	6. To determine the Planck's constant using LEDs of at least 4 different colours.	
	7. To determine the wavelength of laser source using diffraction of single slit.	
	8. To determine the wavelength of laser source using diffraction of double slits.	
	9. Determination of Ionization Potential using thyratron valve.	
	10. Inverse square law.	
	11. Verification of Cauchy Formula	

Suggested Readings:

1. M. Yadav, Practical Physics, Vol 3, KedarNath Ramnath Publication, 2023.

2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.

- 3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 4. Indu Prakash: Practical Physics 5. S.L. Gupta, V. Kumar, "Practical Physics", PragatiPrakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

5. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74 6. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester IV.

Further Suggestions:

The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

Programme:	Degree in Science	Year: III	Semester: Vl Paper-II
	Subject: Physi	ics	
Course Cod	le: Course Title: Analog and Digital Electronics		
Course Outc	omes:		
1. Study	of feedback in amplifiers along with their advantage	es and disadvantages.	
-	of different types of oscillators.	6	
•	rstand the concepts of Boolean Algebra and various i	number systems	
	of logic gates and their applications.	,	
		Com Comme	
Credits: 04		Core Compu	lsory
	: 100	Min. Passing	•
Max. Marks			•
Credits: 04 Max. Marks: External Exa Internal Asso	am: 75		•
Max. Marks External Exa Internal Asso	am: 75	Min. Passing	•
Max. Marks External Exa Internal Asso	am: 75 essment: 25	Min. Passing	•

UnitI	FeedbackAmplifiers Concept of feedback in amplifier, Types of feedback, Voltage gain of feedback amplifier, Advantages of negative feedback, Gain stability, Decreased distortion, Increased bandwidth, Increase in input impedance, Decrease in output impedance, Amplifier circuits with negative feedback,	10
UnitII	Advantage of positive feedback.OscillatorsClassification of oscillators, Frequency of oscillating current, Frequency stability of an oscillator, Essential of a feedback LC oscillator, Tuned base oscillator, Tuned collector oscillator, Hartley oscillator, Colpitt oscillator, Clapp oscillator, Tunnel diode oscillator, Crystal oscillator, Phase shift oscillator, Wien bridge oscillator, Relaxation oscillator, Astable, monostable and bistable multivibrator, Schmitt trigger, Saw-tooth generator.	15
UnitIII	Operational Amplifiers (Black box approach): Characteristics of an ideal and practical Op-Amp (IC-741), Open-loop & closed-loop gain. CMRR, Concept of virtual ground. applications of OpAmps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Zero crossing detector	10
UnitIV	Number System:Decimal, Binary, Octal and Hexadecimal number systems, Inter-conversionof different number systems, Binary addition and subtraction, unsignedbinary numbers, Sign-magnitude numbers, Complement of a number (1'scomplement and 2's complement), BCD, GREY, EXCESS-3 codes.	10
UnitV	Logic Gates and Boolean Algebra: Positive and negative logic, AND, OR and NOT gates (Realization using diodes and transistor), NAND and NOR Gates as universal gates, XOR and XNOR gates. De Morgan's theorems, Boolean laws, Simplification of logic circuit using Boolean algebra, Fundamental products, Minterms and maxterms, Conversion of a truth table into an equivalent logic circuit by (1) Sum of products method and (2) Karnaugh map, Half adder, Full adder and Subtractor, 4-bit binary adder-Subtractor.	15

Suggested Reading

- 1. M.K. Baagde, S.P. Singh and Kamal Singh : Elements of Electronics
- 2. B.L. Theraja : Basic Electronics
- 3. V.K. Mehta : Elements of Electronics
- 4. J.D. Ryder : Networks, Lines and Fields
- 5. J.D. Ryder : Electronic Fundamentals and Applications. 6. Millman and Halkias : Integrated Electronics **Suggested Online Link:**
- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

This course can be opted as an elective by the students of following subjects: The course can be opted as an elective, which is open to all students.

Suggested Continuous Evaluation (25 Marks):

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Class Test/Assignment/ attendance- (10+10+5) Course

Prerequisites: Passed Semester V

DEGREE IN S	CINCE			
Programme: D	egree in Science		Year: III	Semester: VI Practical (Lab)
	Subject: Ph	ysics Practical (Lab) (Practica	al)	
Course Code:	Course Title: Demonstrative A (Practical)	Aspects of Analog and Digital E	lectronics	
to study the Elec	ental physics has the most striking stronics and its application in incomment precision and perfection is	lustry and research.		ruments are used
Credits: 02		C	ore Compu	lsory
External Viva	rd File): 15 actical Exam: 20 Voce : 15		in. Passing	Marks: 17
Total No. of Le	ctures-Tutorials-Practical (in	hours per week): 0-0-4		
Unit	Торіс			No. of Lectures
I]	Lab Experiment List		

)	0))	0	(- J	5	6	6	(((((((6	6	6	5		0	0))))))	D	D	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	(0	0	((((0	(((((((6	6	6	e	e	6	6	6	6	6	6	6	6	ť	ť	6	6	6	e	e	æ	æ	e	e	æ	6	6	6	6	6	6	6	ť	(ť	6	6	6	6	6	6	6	6	6	6	6	6	5	5	5	5								- M	- M	- M	- M	5	50	()	()		
---	---	--	--	--	--	---	---	---	---	--	--	--------	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	---	---	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--	-----	-----	-----	-----	---	----	----	----	--	--

Suggested Readings:

- 1. M. Yadav, Practical Physics, Vol 3, KedarNath Ramnath Publication, 2023.
- 2. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962.
- 3. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015.
- 4. Indu Prakash: Practical Physics 5. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014.

Suggestive Digital Platforms / Web Links:

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities

Suggested Continuous Evaluation Methods:

Continuous internal evaluation shall be based on allotted assignment and class tests. The marks shall be as follows:

Record File (15 marks)

PREREQUISITE: Passed Semester V.

Further Suggestions:

• The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.

National Education Policy-2020

Syllabus for Sri Dev Suman Uttarakhand University and All Affiliated Colleges for Post-Graduation in Physics.

2023

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credit
			Bachelor (Research in Physics)	1	<u>l</u>
	VII		Mathematical Physics	Theory	(04)
			Classical Mechanics	Theory	(04)
			Quantum Mechanics	Theory	(04)
	1 1		Communication Electronics	Theory	(04)
- -			Practical	Practical	(04)
YEAR	VIII		Atomic and Molecular Spectra	Theory	(04)
			Electrodynamics	Theory	(04)
			Astrophysics/ Elementary Particle Physics	Theory	(04)
			Condensed Matter Physics	Theory	(04)
			Elective Paper [one from the list] EL3**	Theory	(04)
	1 1		Practical	Practical	(04)
			Master in Physics		
	IX		Advanced Quantum Mechanics Computational Physics/ Plasma Physics Advanced Electronics -I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I/ Condensed Matter	Theory Theory Theory	(04) (04) (04)
		· · · · · · · · · · · · · · · · · · ·	Advanced Quantum Mechanics Computational Physics/ Plasma Physics Advanced Electronics -I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I/ Condensed Matter Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-II Advanced Electronics -II/Astrophysics -II/High Energy Physics-II/Spectroscopy-II/ Condensed Matter Physics-II	Theory	(04)
			Advanced Quantum Mechanics Computational Physics/ Plasma Physics Advanced Electronics -I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I/ Condensed Matter Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-II Physics-II/ Spectroscopy-II/ Condensed Matter Physics-II/ Spectroscopy-II/ Condensed Matter Physics-II Physics-II Practical	Theory Theory	(04) (04) (04)
	IX		Advanced Quantum Mechanics Computational Physics/ Plasma Physics Advanced Electronics -I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I/ Condensed Matter Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-II Physics-II/ Spectroscopy-II/ Condensed Matter Physics-II Practical Nuclear Physics	Theory Theory Theory	(04) (04) (04) (04)
AR			Advanced Quantum Mechanics Computational Physics/ Plasma Physics Advanced Electronics -I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I/ Condensed Matter Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-I Physics-II/ Spectroscopy-II/ Condensed Matter Physics-II/Spectroscopy-II/ Condensed Matter Physics-II Practical Nuclear Physics Digital Electronics and Computer Architecture	Theory Theory Theory Practical Theory Theory	(04) (04) (04) (04) (04)
			Advanced Quantum Mechanics Computational Physics/ Plasma Physics Advanced Electronics -I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I/ Condensed Matter Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-II Physics-II/ Spectroscopy-II/ Condensed Matter Physics-II Practical Nuclear Physics Digital Electronics and Computer Architecture Advanced Electronics -III/Astrophysics -III/High Energy Physics-III/ Spectroscopy-III/ Condensed Matter Physics-III/Spectroscopy-III/Condensed Matter	Theory Theory Theory Practical Theory	(04) (04) (04) (04) (04) (04)
FIFTH YEAR			Advanced Quantum Mechanics Computational Physics/ Plasma Physics Advanced Electronics -I/Astrophysics -I/High Energy Physics-I/ Spectroscopy-I/ Condensed Matter Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-I Advanced Electronics -II/Astrophysics -II/High Energy Physics-II/ Spectroscopy-II/ Condensed Matter Physics-II Practical Nuclear Physics Digital Electronics and Computer Architecture Advanced Electronics -III/Astrophysics -III/High Energy Physics-III/ Spectroscopy-III/ Condensed Matter	Theory Theory Theory Practical Theory Theory	(04)

2. 3. 4. 5.

Bio Physics Medical Physics Atmospheric Physics Nano Materials and Applications

Subject prerequisites: Bachelor in Science with Physics as major subject.

Her

3

C

cot

67

Programme Outcomes (POs):

Students having Degree in *Bachelor (Research in Physics)* should have knowledge of advanced concepts of Physics and ability to apply this knowledge in various fields of academics, research and industry. They may pursue their future career in the field of academics, research and industry.

- PO1 Competence in the methods and techniques of calculations using Mathematical Physics, Classical Mechanics, Quantum Mechanics and Communication Electronics. It will develope an analytical skill on an advanced level and will enable the student to have mathematical tools to solve complex problems of Physics. The Programme will motivate the student to know more about the matter, the universe and the recent developments in the field of science. The student will have adequate knowledge to work for the industry,, consultancy, education, and research
- PO2 The students would gain substantial knowledge in various branches of physics. The programme will enable the student to explore more in the field of his/her choice like Advanced Electronics, Spectroscopy, Astrophysics and High energy Physics. The student will be well equipped with the knowledge required for different organizations, industry, R& D sector.

68

Programme specific outcomes (PSOs):

PG IST YEAR/ **Bachelor** (**Research in Physics**)

Bachelor (**Research in Physics**) programme provides the student the adequate knowledge, general competence, and analytical skills on an advanced level, needed in industry, consultancy, education, research, or in government organisation.

Programme specific outcomes (PSOs):

PG IIND YEAR/ Master in Physics

- The Master of Science in Physics programme provides student the adequate knowledge to use mathematical tools to solve complex physical problems and have the solid background and experience needed to analyze and solve advanced problems in physics.
- ☐ This course would enable the student to acquire scientific skills and the practical knowledge by performing experiments in general physics and electronics.
- ☐ The student would also get some research oriented experience by doing theoretical and experimental projects in the last semester under the supervision of faculty.

□ The course as a whole opens up several career doors for the students interested in various areas of science and technology in private, public and government sectors. Students may get job opportunities in higher education, research organizations, physics consultancy and many others. Some of the institutions where physics students can start their career are: BARC, DRDO, NPTC, IISc, ISRO, ONGC, BHEL, PRL, NPL, SINP, VECC, IITs, NITs, IIPR etc.

							Subject	t: Pł	nysics			
Course/Ent ry-Exit Levels	Yea r	Sem	Paper I	Credi t/hrs	Paper II	Credit/ hrs	Paper III	Credi t/hrs	Paper IV	Credit /hrs	Paper V	Credit/ hrs
		VII	Mathematica l Physics	4/60	Classical Mechanics	4/60	Quantum Mechanics	4/60	Communicati on Electronics	4/60		
Bachelor (Research in Physics)	IV	VII I	Atomic and Molecular Spectra	4/60	Electrodynamics	4/60	Elementary Particle Physics	4/60	Condensed Matter Physics	4/60	Elective Paper [one from the list] EL3**	4/60
	V	IX	Advanced Quantum Mechanics	4/60	Plasma Physics	4/60	Advanced Electronics - I/Astrophysics -I/High Energy Physics-I/ Spectroscopy- I		Advanced Electronics - II/Astrophysi cs -II/High Energy Physics-II/ Spectroscopy -II	4/60		
Master in Physics	v	X	Nuclear Physics	4/60	Digital Electronics and Computer Architecture	4/60	Advanced Electronics - III/Astrophysi cs -III/High Energy Physics-III/ Spectroscopy- III		Advanced Electronics - IV/Astrophys ics -IV/High Energy Physics-IV/ Spectroscopy -IV	4/60		
Comments												
							Internal Asse	ssmen	t and Extern	al Asse	ssment	
		In s	ternal Assess	sment	Mar	ĸ			Assessment			larks

DETAILED SYLLABUS FOR BACHELOR (RESEARCH IN PHYSICS) OR P.G FIRST YEAR

	BACHELOR (RESEARCH IN PHYSICS))	
Programme: BAC	CHELOR (RESEARCH IN PHYSICS) YE	EAR IV	SEMESTER
			VII/PAPER I
	Subject: Physics		
Course code	Course Title: Mathematical	l Physics	
	Course Outcomes		
Students would	be able to understand the mathematical method	s essential fo	or solving the
advanced proble	ems in physics. It would be helpful in the developme	ent of the ability	ty to apply the
mathematical co	oncepts and techniques to solve the problems in th	heoretical and	experimental
physics. The kn	owledge of mathematical physics would be benefic	cial in further	research and
development as	it serves as a tool in almost every branch of science a	and engineerin	ng Course.
Credits: 4			Core
Credits. 4			Compulsory
Max. Marks: 1	00		Min.
External Exam			Passing
Internal assess			Marks: 36
	ures-Tutorials-Practical (in hours per week): 4-0-0		1 1111 KS: 50
UNIT	ТОРІС		No. of
			NO. 01
	Torre		
UNIT I		al equations.	Lectures
	Special Functions Series solution of differentia	-	
	Special Functions Series solution of differentia Legendre, Bessel, Hermite, and Laguerre differen	itial equation	
	Special Functions Series solution of differentia Legendre, Bessel, Hermite, and Laguerre differen and related polynomial, physical integral form of	tial equation polynomials	Lectures
	Special Functions Series solution of differentia Legendre, Bessel, Hermite, and Laguerre differen and related polynomial, physical integral form of and their orthogonality relations. Generating F	tial equation polynomials	Lectures
UNIT I	Special Functions Series solution of differential Legendre, Bessel, Hermite, and Laguerre different and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation.	tial equation polynomials function and	Lectures
	Special Functions Series solution of differentia Legendre, Bessel, Hermite, and Laguerre differen and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation. Curvilinear Coordinates and Tensors Curvilinear	tial equation polynomials function and Coordinates	Lectures
UNIT I	Special Functions Series solution of differentia Legendre, Bessel, Hermite, and Laguerre differen and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation. Curvilinear Coordinates and Tensors Curvilinear and various operators in circular, cylindrical a	tial equation polynomials Function and Coordinates nd spherical	Lectures
UNIT I	Special Functions Series solution of differentia Legendre, Bessel, Hermite, and Laguerre differen and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation. Curvilinear Coordinates and Tensors Curvilinear	tial equation polynomials Function and Coordinates nd spherical	Lectures 15
UNIT I	Special Functions Series solution of differentia Legendre, Bessel, Hermite, and Laguerre differen and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation. Curvilinear Coordinates and Tensors Curvilinear and various operators in circular, cylindrical a	tial equation polynomials Function and Coordinates and spherical c of a Tensor,	Lectures
UNIT I	Special Functions Series solution of differentia Legendre, Bessel, Hermite, and Laguerre differen and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation. Curvilinear Coordinates and Tensors Curvilinear and various operators in circular, cylindrical a coordinate systems, classification of Tensors, Rank	Coordinates nd spherical c and anti-	Lectures 15
UNIT I	Special Functions Series solution of differentia Legendre, Bessel, Hermite, and Laguerre differen and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation. Curvilinear Coordinates and Tensors Curvilinear and various operators in circular, cylindrical a coordinate systems, classification of Tensors, Rank covariant and contra-variant tensors, symmetri	Coordinates of a Tensor, ic and anti- ontraction of	Lectures 15
UNIT I	Special Functions Series solution of differential Legendre, Bessel, Hermite, and Laguerre different and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation. Curvilinear Coordinates and Tensors Curvilinear and various operators in circular, cylindrical a coordinate systems, classification of Tensors, Rank covariant and contra-variant tensors, symmetri symmetric Tensors, Kronecker delta symbol. Co	Coordinates and spherical c and anti- ontraction of s, covariant	Lectures 15
UNIT I	 Special Functions Series solution of differential Legendre, Bessel, Hermite, and Laguerre different and related polynomial, physical integral form of and their orthogonality relations. Generating Frecurrence relation. Curvilinear Coordinates and Tensors Curvilinear and various operators in circular, cylindrical a coordinate systems, classification of Tensors, Rank covariant and contra-variant tensors, symmetric symmetric Tensors, Kronecker delta symbol. Corrensor, metric Tensor and Tensor densities differentiation and Geodesic equation (variational Particular) 	Coordinates nd spherical c and anti- ontraction of s, covariant Method).	Lectures 15
UNIT I	Special Functions Series solution of differential Legendre, Bessel, Hermite, and Laguerre different and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation. Curvilinear Coordinates and Tensors Curvilinear and various operators in circular, cylindrical a coordinate systems, classification of Tensors, Rank covariant and contra-variant tensors, symmetri symmetric Tensors, Kronecker delta symbol. Co Tensor, metric Tensor and Tensor densities differentiation and Geodesic equation (variational f Complex Variables Function of complex variables	Coordinates and spherical of a Tensor, a covariant Method).	Lectures 15
UNIT I	 Special Functions Series solution of differential Legendre, Bessel, Hermite, and Laguerre different and related polynomial, physical integral form of and their orthogonality relations. Generating Frecurrence relation. Curvilinear Coordinates and Tensors Curvilinear and various operators in circular, cylindrical a coordinate systems, classification of Tensors, Rank covariant and contra-variant tensors, symmetric symmetric Tensors, Kronecker delta symbol. Corrensor, metric Tensor and Tensor densities differentiation and Geodesic equation (variational Parallel Complex Variables Function of complex variables Riemann differential equation, Cauchy's integration. 	Coordinates and spherical cof a Tensor, ic and anti- ontraction of s, covariant Method).	Lectures 15
UNIT I	Special Functions Series solution of differential Legendre, Bessel, Hermite, and Laguerre different and related polynomial, physical integral form of and their orthogonality relations. Generating F recurrence relation. Curvilinear Coordinates and Tensors Curvilinear and various operators in circular, cylindrical a coordinate systems, classification of Tensors, Rank covariant and contra-variant tensors, symmetri symmetric Tensors, Kronecker delta symbol. Co Tensor, metric Tensor and Tensor densities differentiation and Geodesic equation (variational f Complex Variables Function of complex variables	Coordinates and spherical cof a Tensor, ic and anti- ontraction of s, covariant Method).	Lectures 15

UNIT IV	Integral Transforms Fourier integral and Fourier Transform,	
	Fourier integral theorem, finite and infinite integral, Laplace	
	transform of elementary function (Dirac delta & Green's	15
	function), Solution of simple differential equations.	

Suggested Readings:	
B. S. Rajput: Mathematical Physics (Pragati Prakashan, Meerut) L. I. Pipes: Mathematical Physics (McGraw Hill)	
P. K. Chattopadhyay: Mathematical Physics (Wiley Eastern, New Delhi)	
Arfken.: Mathematical methods for Physics	
Harper Charlie: Introduction to Mathematical Physics	
Mathews and Walker: Mathematical Methods of Physics (Benjamin press)	
Horse and Feshbach : Methods of Theoretical Physics (McGraw Hill)	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

BACHELOR (RESEARCH IN PHYSICS)			
Programme: BACHE	ELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER
			VII/PAPER
			Π
Subject: Physics			
Course code	Course code Course Title: Classical Mechanics		

Course Outcomes:

In this course students would learn to apply the Newtonian laws using various mathematical formulations to describe the motions of macroscopic objects using generalized coordinates, momentum, forces and energy. The classical mechanics would be helpful in understanding of advanced branches of modern physics.

Credits: 4		Core Compulsory
		Min. Passing Marks: 36
UNIT	TOPIC	No. of Lectures
UNIT I	Mechanics of a System of Particles Constraints and generalized coordinates, D Alembert's principle, Lagrange equations for holonomic and non holonomic systems and their applications, conservation laws of linear momentum, energy and angular momentum.	15
UNIT II	Hamiltonian Formulation and Hamilton Jacobi Theory Hamiltonian equations of motion and their physical significance, Hamilton's principle, principle of least action, canonical transformations Hamilton-Jacobi theory, Poisson brackets, properties of Poisson bracket, Poisson's Theorem, Lagrange bracket.	15
UNIT III	Dynamics of a Rigid Bodies Motion of a rigid body, body and space Reference system, angular momentum and Inertia tensor, Principle axes- Principle moments of Inertia, spinning tops, Euler angles, Infinitesimal rotations.	15
UNIT IV	Central Force Problem Action and angle variables, phase integral, small oscillations, Kepler's laws of Planetary motion and their deduction, scattering in a Central field, Rutherford scattering cross section	15
N.C Lano	Suggested Readings: Goldstein: Classical Mechanics . Rana & P. S. Jog: Classical Mechanics dau and Lifshitz: Mechanics, Pergamon Sommerfeld : Mechanics, demic Press	

Whittaker: Analytical Dynamics of Particles and Rigid Bodies -Cambridge Raychaudhuri: Classical Mechanics, Oxford Bhatia: Classical Mechanics, Narosa. H.M. Agrawal: Classical Mechanics, New Age International

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Bachelor in Science with Physics as major subject	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

BACHELOR (RESEARCH IN PHYSICS)				
Programme: BACHELO	R (RESEARCH IN PHYSICS)	YEAR IV	SEMESTE	
			R	
			VII/PAPER	
			III	
	Subject: Physics			
Course code	Course Title: Quantum Mechanics			
Course Outcomes:				

The course provides an understanding of the behaviour of the systems at microscopic (atomic and nuclear) scale and even smaller. Students would learn basic postulates and formulations of quantum Mechanics. The course, in fact, plays an important role in explaining the behaviour of all physical systems in the universe. The course includes the study of a brief review of foundations of quantum mechanics, matrix formulation of quantum mechanics, symmetry in quantum mechanics and approximation methods for bound states.

Credits: 4		Core
		Compulsory
Max. Marks: 10		Min.
External Exam:	75	Passing
Internal assessm	ent: 25	Marks: 36
Total No. of Lect	ures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	TOPIC	No. of Lectures
UNIT I	Non Balativistia Quantum Machanics and Sahuädingan	Lectures 15
	Non-Relativistic Quantum Mechanics and Schrödinger	15
	Equation	
	Schrödinger's equation, Probability and current densities,	
	continuity equation, physical interpretation of wave function,	
	orthogonality of eigen functions, Principle of superposition,	
	wave packet, normalization, Schrödinger's equation in three	
	dimensions, centrally symmetric square well and harmonic	
	potentials, harmonic oscillator and its wave functions,	
	Hydrogen atom.	
UNIT II	Operator Formulation of Quantum Mechanics	15
	State vectors and operators in Hilbert Space, Eigen values and	
	Eigen vectors of an operator, Hermitian, Unitary and	
	Projection operators, commuting operators, BRA and KET	
	Notations, Postulates of Quantum Mechanics, co-ordinate	
	Momentum and Energy representations, dynamical behavior,	
	Heisenberg, Schrödinger and interaction Pictures	
UNIT III	Theory of Angular Momentum	15
	Orbital Angular momentum operator, its eigen value and	
	eigen functions, space quantization, spin angular momentum,	
	Pauli's theory of spin, Addition of angular momentum,	
	ClebschGordan coefficients	
UNIT IV	Approximation Methods	15
	Time independent and Time dependent Perturbation	
	Theory Stationary Perturbation, first and second order	

	rections, WKB approximation methods, connection	
	nula and boundary conditions, Bohr Sommerfield	
-	ntization rule, Penetration of potential barrier, Time	
	ependent perturbation theory and its applications.	
Арр	blications of time-dependent perturbation theory for	
cons	stant perturbation, Fermi Golden rule, Coulomb	
exci	itation, Sudden and adiabatic approximation.	
	Suggested Readings	
B. S. Raj	jput: Advanced Quantum Mechanics	
Schiff (Quantum Mechanics	
Thankpp		
Loknatha	an and Ghatak Quantum Mechanics	
	Can be opted by	
Bachelo	or in Science with Physics as major subject	
Sugg	ested Continuous Evaluation Methods:	
	Course Prerequisites	
Bachelo	or in Science with Physics as major subject	
Su	nggested Equivalent Online Courses:	
	ing - Massachusetts Institute of Technology,	
https://openlearning.mit		
· · · ·	nme on Technology Enhanced Learning	
e e	youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	,	
,	abha.gov.in/index.php/program/current_he/8	
1		

BACHELOR (RESEARCH IN PHYSICS)				
Programme: BACH	ELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER	
			VII/PAPER IV	
	Subject: Physics			
Course code	ode Course Title: Communication Electronics			
Course Outcomes				

This course helps the student to gain basic ideas of the fundamentals of communication systems. The course includes Modulation AM and FM (Transmission and reception), SSB transmission, AM detection, AGC, Radio receiver characteristics, FM transmitter, Propagation of Radio Waves ,Antenna , Fundamentals of image transmission,TV transmitter,Transmission Lines etc.The course may provide the opportunity to work in any organization related to communication.

Credits: 4	Core
	Compulsory
Max. Marks: 100	Min.
External Exam: 75	Passing
	-

Internal a	ssessment: 25	Marks: 36
Total No. of	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of Lectures
UNIT I	Semiconductor devices: Diodes, junctions, transistors, field effect devices, homo- and hetero-junction devices, device structure, device characteristics, frequency dependence and applications, optoelectronic devices (solar cells, photo-diode, LEDs, optocoupler).	t 15
UNIT II	Combinational Circuits: Boolean algebra, canonical forms of Boolean functions, simplification of Boolean functions (K-map method, tabulation method), don't care conditions. adders & subtractors, encoders, decoders, multiplexers, demultiplexers, digital to analog and analog to digital converters.	15
UNIT III	Sequential Circuits: Memory element: RS (using NAND and NOR Gate), clocked RS, JK, JKMS, D-type, T-type and edge triggered flip flop; Registers: right, left and left-right both type shift registers. Counters: asynchronous & synchronous counters, binary & nor binary counters (use of K- maps), shift counter (Johnson counter), ring counter.) ; 1
UNIT IV	Power Electronics: Characteristics and applications of Silicon controlled rectifier, TRIAC, DIAC & UJT	n 15

	Suggested Readings:	
1.	Electronic Principles' - A.P. Malvino, TMH Publishing Company	
	Limited.	
2.	'Digital Fundamentals' - T.L. Floyd, Universal Book Stall, New Delhi.	
3.	'Digital Principles and Applications'- A.P. Malvino and D.P. Leach,	
	TMH Publishing Company Limited.	
4.	'Digital Design'- M. Mano, PHI Private Limited.	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Bachelor in Science with Physics as major subject	

Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN I	PHYSICS)	
Programme: BACHE	ELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER
			VII/PAPER
			V
	Subject: Physics		
Course code	Course Title: PR	ACTICAL	
	Course Outcomes:		
Q ₁ , 1,,	n practical knowledge by performing va		1
Optics.	i practical knowledge by performing va	rious experiments of L	Acctronics and
Optics.			
Credits: 4 Core			Coro
Compulse		Core	
Max. Marks: 100 Min.			Compulsory
IVIAN. IVIALKS: 100			Compulsory
External Exam: 7	5		Compulsory Min.
	-		Compulsory
External Exam: 7 Internal assessme	-	0-0	Compulsory Min. Passing
External Exam: 7 Internal assessme	nt: 25	0-0	Compulsory Min. Passing
External Exam: 7 Internal assessme	nt: 25	0-0	Compulsory Min. Passing

Study of RC circuit with an AC source using phase diagrams.	
Absorption Spectrum of KMnO4 using Hilger-Nutting Photometer.	60
Young's modulus by Interference method.	
NPN and PNP Transistor Characteristics with (a) Common base (b)	
Common emitter configurations/ h – parameter.	
Study of RC- coupled/ Transformer Coupled Amplifier.	
Study of B-H curve.	
Study of Amplitude Modulation /Demodulation.	
Verification of the Hartmann's Formula.	
Frank-Hertz experiment.	
e/m by Zeeman effect.	
Determination of susceptibility.	
Study of CRO.	
Velocity of Ultrasonic waves.	
Linear Air track.	
Leacher Wire	

Can be opted by		
Bachelor in Science with Physics as r	najor subject	
Suggested Continuous Evaluation	Methods:	
Course Prerequisites		
Bachelor in Science with Physics as r	najor subject	
Suggested Equivalent Online C	ourses:	
1. Virtual Labs at Amrita Vishwa	Vidyapeetham,	
https://vlab.amrita.edu/?sub=1&brch=74		
2. Digital Platforms /Web Links of other virtual	labs may be suggested /	
added to this lists by individual Universities		
-		

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BAC	HELOR (RESEARCH IN PHYSICS) YEAR IV	SEMESTER VIII/PAPER I
	Subject: Physics	
Course code	Course Title: Atomic and Molecular Spectra	a
students learn b technique in spe students to expl biomedical, indu	Course Outcomes ture includes atomic and molecular spectroscopy. As per the cour basics concepts of spectroscopic principles and rules. Studer ectroscopy and know about their applications. The course is ore R & D opportunities in various areas of science and tech strial and environmental fields.	ts would learn helpful for the nology such as
Credits: 4		Core
Max. Marks: 10 External Exami Internal assesses Total No. of Lectu	: 75	Compulsory Min. Passing Marks: 36
UNIT	ΤΟΡΙΟ	No. of Lectures
UNIT I	Fine structure of hydrogen spectrum, L-S and J-J coupling, Spectroscopic terms, Hund's rule and time reversal, Pauli's exclusion principle.	15
UNIT II	Alkali spectra, spin-orbit interaction and fine structure in alkali Spectra, Equivalent and non-equivalent electrons, Normal and anomalous Zeeman effect, Paschen Back effect, Stark effect, Hyperfine structure (qualitative).	
UNIT III	Molecular spectra of diatomic molecules, Born Oppenheimer approximation, elementary idea of quantization of rotational and vibrational energy, rotational spectra for rigid and non rigid rotations, vibrational spectra (harmonic and an- harmonic), intensity and selection rules and molecular constants.	
UNIT IV	Atomic Polarizability, Raman spectra, Quantum theory of Raman spectra, Determination of molecular structure, Electronic spectra, band system, Progression and sequences, band head formation, Condon parabola, Franck Condon Principle dissociation energy and its determination	
Walker a Barrow:	Suggested Readings: nwell: Fundamentals of Molecular Spectroscopy nd Stranghen: Spectroscopy Vol. I, II, & III G.M. Introduction to Molecular Spectroscopy Herzberg: Spectra o molecules	f

Jeanne L Mchale: Molecular Spectroscopy	
J. M. Brown: Molecular Spectroscopy	
P. F. Bemath: Spectra of atoms and molecules	
J. M. Holias: Modern Spectroscopy	
K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications	
A Yariv: Quantum Electronics	
M. D. Levenson: Intoduction to non-linear laser spectroscopy	
B. B. Laud: Laser and non-linear optics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods:	
Suggested Continuous Evaluation Methods:	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses:	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology,	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. 2. National Programme on Technology Enhanced Learning	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester VII with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. 2. National Programme on Technology Enhanced Learning	

	BACHELOR (RESEARCH IN PHY	'SICS)	
Programme: BACHELOR (RESEARCH IN PHYSICS) YEAR IV SEMESTER			
			VIII/PAPER
			II
	Subject: Physics		
Course code	Course code Course Title: Electrodynamics		
	Course Outcomes:		
The study of electrod	ynamics provides basic foundation for t	the student to un	nderstand advance
courses of physics. Th	e course includes Basic equations of Ele	ctromagnetism,	Electrostatics;
Magnetostatics; Maxwell's equation, Four Vector Formalism of Maxwell's Equations Four vector potential, electromagnetic field tensor and Quantization of electromagnetic energy			
Credits: 4			Core
Compulsory			Compulsory
Max. Marks: 100			Min. Passing
External Exam: 75 Marks: 36			Marks: 36
Internal assessment: 25			

	TONO	
UNIT	ΤΟΡΙΟ	No. of Lectures
UNIT I	Electromagnetism Basic equations; Electrostatics; Magnetostatics; Different Systems of Units, Preliminary notations, four- vectors, Lorentz transformations, time, space and light like separations, Lorentz invariants, Energy and Momentum.	15
UNIT II	Maxwell's Equations Maxwell's equation, Displacement current, electromagnetic waves in conducting and nonconducting medium, Poynting theorem, boundary condition at the interface of conducting and non conducting media, propagation between parallel conducting plates. Electromagnetic wave equations	15
UNIT III	Four Vector Formalism of Maxwell's Equations Four vector potential, electromagnetic field tensor, Lorentz invariance, Lorentz force, covariant form of Maxwell's equations, four vector current, continuity equation, Gauge invariance of Maxwell equation, electromagnetic energy- momentum tensor, Motion of charge particle in electromagnetic field, Lorentz force	15
UNIT IV	Electromagnetic Radiation Lienard-Witchert potential, conventional potential, Quantization of electromagnetic energy (virtual photon), Radiation from an Accelerated Charge, Fields of an accelerated charge; angular and frequency distributions of the emitted radiation, special cases of acceleration parallel and perpendicular (circular orbit) to velocity; Larmor's	15
	formula and its relativistic Generalization; Bremstrahlung, Cerenkov radiation	
	Suggested Readings	
Jackson	: Classical electrodynamics; Wiley Eastern, New Delhi	
Landau	and Lifshitz: Classical theory of fields; Pergameon Press	
Thide: H	Electromagnetic field Theory	
Panofsk	y and Phillips: Classical Electricity and Magnetism	
Landau	&Lifshitz: Electrodynamics of Continuous Media	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	

Course Prerequisites Passed Semester VII with Physics as major		
Suggested Equivalent Online Courses:		
1. MIT Open Learning - Massachusetts Institute of Technology,		
https://openlearning.mit.edu/		
2. National Programme on Technology Enhanced Learning		
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -		
DTH Channel,		
https://www.swayamprabha.gov.in/index.php/program/current_he/8		

	BACHELOR (RESEARCH IN PHYS	SICS)	
Programme: BACHELC	R (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER
			VIII/PAPER
			III a
	Subject: Physics		
Course code	Course Title: Astrophysic	s	
	Course Outcomes		
The course is important for the students to learn about the most fundamental building blocks of Universe and Solar system and hence to understand Stellar system. The course provides a platform for the students seeking research opportunities in Astrophysics.			
Credits: 4			Core
			Compulsory

	cam: 75 sessment: 25	Min. Passing Marks: 36
Total No. of I	Lectures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	TOPIC	No. of Lectures
UNIT I	The universe and Solar System: Basic idea of universe and galaxies, Astronomical telescopes. The solar system. Classification of the Planets, Orbits, Laws of planetary motion. Physical features, surface features, Internal Structure. Atmosphere, Satellites and Rings. Asteroids, Meteors and Meteorites their types, Orbits: physical nature and composition. Origin of the minor planets, Observation of meteor showers and sporadic meteors Meteorite craters. Origin of Comets, Periodic comets, Physical nature, Spectra, Brightness variation. Gas production rates, dust and ion tails.	15
UNIT II	Stellar System: Sun as a Star: History of Sun, Sun's interior, the photosphere, the solar atmosphere (chromosphere & corona). Salient features of sunspots, sun's rotation & solar magnetic field, explanation for observed features of sunspots. Distances of stars from the trigonometric. Secular and moving cluster parallaxes. Stellar motions, Magnitude scale and magnitude systems. Atmospheric extinction. Absolute magnitudes and distance modulus. color index. The Hertzberg- Russell Diagram: The colour, Brightness or luminosity, the population of star. Elementary idea of Binary & Variable Stars. Nuclear fission, Nuclear fusion, condition for nuclear reaction in stars. Types of galaxies, Structure and features of the Milky Way Galaxy	15
UNIT III	Physics of the Stars: Apparent and Mean Position of stars. Effects of atmospheric refraction, aberration. parallax, precession, nutation and proper motion on the coordinates of stars. Reduction from apparent to mean places and vice versa. Spectra of Stars. Distribution of stars in space. Statistical parallaxes. Local standard of rest. Solar motion and its determination. Peculiar velocities. Single and Twostar stream hypothesis. Velocity ellipsoid. Comparison with solar neighbourhood. Bottlinger's diagram. HR diagram. HD and MK spectral classification of stellar spectra. Radiation laws and basic ideas on spectral line formation. Explanation of stellar spectra in terms of Boltzmann and Saha equations. Spectroscopic parallax	15

UNIT IV	Fundamental Equations: Equation of mass distribution. Equation of hydrostatic equilibrium. Equation of energy transport by radiative and convective processes. Equation of thermal equilibrium. Equation of state. Stellar opacity. Stellar energy sources. Stellar models: The overall problem and boundary conditions. Russell- Voigt theorem. Dimensional discussions of mass-luminosity law. Polytropic configurations. Homology transformations.	
	Suggested Readings:	
	 Principles of Stellar Dynamics, S. Chandrasekhar The Great Universe, G K Sudarshan, S chand Publications. Our Solar System, Joshi and Rana, New Age Publications Galaxies and Universe, K.C. Freeman: The Origin and Evolution of Galaxies, S.D. M. White: Lecture notes on "Dynamics of Stellar Systems", S. M. Alladin: Stars and Galaxies: K. D. Abhyankar (Tata McGraw Hill Publication) Exploration of the Universe: G. Abell The Structure of Universe: Jayant Naralikar Physics of Comets: K.S. Krishnaswamy 	

11. Our solar system: A.W. Joshi & N. Rana	
12. Introduction to Astrophysics: Baidyanath Basu	
13.Astrophysics of the Sun: Harold Zirin	
14. The Quiet Sun: Gibson	
15. Stellar Evolution: M. Schwarzschild	
16. S. Chandrasekhar: Stellar Structure: S. Chandrasekhar	
17.Principles of Stellar Interiors - Vol.I and II: Cox and Guili	
18. White Dwarfs, Neutron Stars and Black Holes: Shapiro and Tevkolsky.	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	

Suggested Equivalent Online Courses:
1. MIT Open Learning - Massachusetts Institute of Technology,
https://openlearning.mit.edu/
2. National Programme on Technology Enhanced Learning
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -
DTH Channel,
https://www.swayamprabha.gov.in/index.php/program/current_he/8

		BACHELOR (RESEARCH IN H	PHYSICS)	
Programme: BA	ACHELO	R (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII/PAPER III b
		Subject: Physics		
Course code			ntary Particle Physics	
matter and ra	adiation, le course	Course Outcomes t for the students to learn about the interaction among elementary part provides a platform for the students	icles and hence to	understand thei
Credits: 4				Core Compulsory
Max. Marks:				Min.
External Exa		25		Passing
Internal asse			0.0	Marks: 36
I otal No. of Le	ectures-1u	torials-Practical (in hours per week): 4-0	0-0	
UNIT		ТОРІС		No. of Lectures
UNIT I	Class intera Stran Symi rever	entary Particles History of e ification of elementary part actions, Resonances, Lepton and Bar geness, Hypercharge, Gell - Mann netries and conservation laws, Parity sal and charge conjugation, Parity v esons, CPT invariance.	icles, Fundamenta yon number; Isospin Nishijima relations y, Time	1
UNIT II	Elem repre weigl funda U(3), opera (0 1),	ry Symmetries and Application entary Particles Basics of unitary sentation of SU(2), SU(3) diagonts, generators of SU(2) and U(2) unental representation of SU(2), gen Weight of first fundamental representors, I, U, V spins, complete weight (3, 0), (1 1) and (2 1) representations to Mass formula.	groups, fundamenta onal generators and , weight diagram o nerators of SU(3) and ntation of SU(3), shif diagram for the (1 0)	1 1 f 1 t

UNIT III UNIT IV	 Method of Young Tableaux and its Applications Young Tableaux and unitary symmetry, standard arrangements of young tableaux, Dimentaionality of the representations of SU(N), Multiplets of SU(N-1), subgroup of SU(N), Baryon multiplets in different representations, general rule and its application for reducing kronecker product of two representations, kronecker product of three particle state vectors. Nuclear and Particle Detectors Basic principle of particle 	15
	Nuclear and Farticle Detectors Dasie principle of particle	15
	detectors, Ionization chamber, Proportional counter, Geiger- Muller Counter, Scintillation counters and-ray spectrometer, semiconductor detector, Nuclear emulsion technique, Cloud chamber, Bubble chamber	
	Suggested Readings:	
	Perkins: Introduction to High Energy Physics, Cambridge ity Press, 2000	
S. N. Gł 1994	noshal: Atomic and Nuclear Physics, S. Chand and Company Ltd,	
D. Griff	iths: Introduction of Elementary Particles	
DB Lich Press, 19	ntenberg: Unitary Symmetry and Elementary Particles, Academic 978	
Hughes:	Elementary Particles	
Blatt and	d Weiskopf: Theoretical Nuclear Physics	
FE Clos		
G. LF L	i: Gauge Field Theory:	
	urcham: Nuclear Physics R. M. Singru: Introduction rimental nuclear physics	
E. Segre	: Experimental nuclear physics	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VII with Physics as major	
	v °0 °	

Suggested Equivalent Online Courses:	
4. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
5. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 6. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHY	(SICS)	
Programme: BAG	CHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII/PAPER IV
	Subject: Physics		
Course code	Course Title: Condense	ed Matter Physics	
structures, symmetry X-ray diffraction vibrational pro-	Course Outcomes: ill be able to develop an understanding of the metries. The student would gain insight about t on in crystals. This course also includes ela perties and also superconductivity. The cou aterial science and technology.	he interior of the s stic waves, phon	ubstances using ons, and lattice
Credits: 4			Core Compulsory
Max. Marks: 1 External Exam Internal assess	n: 75 ment: 25		Min. Passing Marks: 3 6
Total No. of Le	ctures-Tutorials-Practical (in hours per week):	4-0-0	
UNIT	ΤΟΡΙΟ		No. of Lectures
UNIT I	Symmetry and Reciprocal Lattice: Crystal symmetry elements, Miller indic type, fundamental type of direct lattices i. and 3 dimensional lattice, Diffraction Crystal: The Bragg law, Fourier Analysis Reciprocal lattice Vectors, Diffract Brillouin Zones, Reciprocal lattice (exat fcc, hcp lattices), Crystal structure fa Atomic form factor, Scattering factor diffraction maxima, extinction due to latt	e. 2 dimensional of Waves by ion Condition. mple of sc, bcc, ctor (bcc, fcc), rs, Intensity of	
UNIT II	Lattice Vibrations: Concept of dispersion relation, quantizat vibrations (Phonons), normal modes coordinates, longitudinal and transvers vibration, modes of vibration of mor diatomic lattices. Density of states (Phone	& normal e modes of natomic and	15

UNIT III	Free Electron theory of metals: Free electron theory of metals, free electron gas in one dimensional box, free electron gas in three dimensional box-filling up of energy bands, Density of electron states, Fermi energy, Average kinetic energy of electron , average velocity.	15
UNIT IV	Vertication Thermal properties of solids: Specific heat of solids, Classical theory, Einstein theory, The Debye theory, Born's modification of the Debye theory. Heat capacity of diatomic lattices. Thermal conductivity. Lattice thermal conductivity. Phonon mean free path. Phonon-phonon scattering-the umklapp processes. Thermal Expansion. Origin of thermal expansion. Gruneisen relation	15

Suggested Readings A. J. Dekker: Solid State Physics Ashcroft and Mermin: Solid State Physics S.O. Pillai: Solid State Physics R. L. Singhal: Solid State Physics C. Kittle: Introduction to Solid State Physics Verma &Srivastava: Crystallography for Solid State Physics Can be opted by

Bachelor in Science with Physics as major subject

Suggested Continuous Evaluation Methods:

Course Prerequisites Passed Semester VII with Physics as major

Suggested Equivalent Online Courses:

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning

(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTU Channel

DTH Channel,

 $https://www.swayamprabha.gov.in/index.php/program/current_he/8$

BACHELOR (RESEARCH IN PHYSICS)			
Programme: BA	CHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER
			VIII/PAPER V
Subject: Physics			
Course code	Course Title: PRA	CTICAL	

Course Outcomes:

The student will have adequate knowledge to perform the experiments of different fields of physics with clear understanding of the theory behind the experiment. Student will know about various electronic components and learn to design some basic electronic

circuits and study their applications.

Credits: 4		Core Compulsory
Max. Mark External Ex	xam: 75	Min. Passing Marks: 36
	sessment: 25 Lectures-Tutorials-Practical (in hours per week): 0-0-4	
UNIT	List of Experiments	No. of Lectures
	 Study of the Phase measurement by superposition of voltages with LCR Circuits. Study of different oscillators (Hartely, colpit, Weinbridge 	
	 oscillators etc.). 3. Study of an electronically regulated power supply. 4. Study of negative Feed- back Amplifier. 5. Determination of wavelength (λ) and wavelength difference (Δλ) by Michelson Interferometer. 6. Study of different type of Resistances and Diodes. 7. Study of Photo Voltaic Cell. 8. Stefan's Constant 9. FET characteristics 10. Fresnel's Law 11. Cauchy Formula 12. Lattice Dynamic Kit 	60
	 Study of Logic gates Detection Efficiency of Diode Fabry – Perot Interferometer Four Probe method 	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Bachelor in Science with Physics as major subject	
1 171	Suggested Equivalent Online Courses:	
	al Labs at Amrita Vishwa Vidyapeetham,	
2. Digita	amrita.edu/?sub=1&brch=74 al Platforms /Web Links of other virtual labs may be suggested / s lists by individual Universities	

BACHELOR (RESEARCH IN PHYSICS)			
Programme: BA	CHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII
			EL3(1)
Subject: Physics			
Course code	Course Title: Statistic	cal Physics	

Course Outcomes:

The course structure includes different aspects of statistical Mechanics and Statistical models for phase transition. Study of this course will enable students a clear understanding of classical and Quantum Statistics.

Credits: 4		Elective
Max. Mar	·ks: 100	Min. Passing
External 1	Exam: 75	Marks: 33
Internal a	ssessment: 25	
Total No. o	f Lectures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ТОРІС	No. of Lectures
UNIT I	Foundation of Statistical Mechanics Microscopic and macroscopic	15
	states, Density of states, Micro-canonical, Canonical and grand	
	canonical ensembles, Canonical ensemble and Gibb's distribution,	
	Boltzmann–Planck method, Partition function and statistical	
	definition of thermodynamic quantities, Computation of partition	
	functions of some standard systems.	
UNIT II	Statistical Properties System of linear harmonic oscillators in the	15
	canonical ensemble; Grand canonical ensemble and its partition	
	function; Chemical potential; Partition function and distribution for	
	perfect gas; Gibb's paradox; Free energy, entropy, Equation of state	
	and specific heat determination of perfect gas.	
UNIT III	Statistical models Theory of phase transitions, First order phase	15
	transition, Second order phase transitions and higher order phase	
	transitions (elementary discussion), Ising model, One dimensional	
	(with exact solution), Two dimensional (with exact solution) &	
	three dimensional model (elementary idea), Landau theory of phase	
	transition, Weiss theory of Ferro-magnetism, Heisenberg model.	
	Virial equation of states.	
UNIT IV	Quantum Statistics Bose-Einstein and Fermi- Dirac distributions,	15
	Degeneracy, Gas degeneration, Degenerate Bose gas, Bose Einstein	
	condensation, Highly degenerate B-E and F- D gases; examples of	
	Molecular Hydrogen, liquid helium and electron gas in metals.	
	Suggested Readings	
Quantum M	Archanics: A. S. Davidov	
-	Iechanics: B. S. Rajput	
	Iechanics: Paul Roman	
-	Chemistry: Glastohn	
Statistical N	Mechanics: Landau and Lifshitz	
	Mechanics: Pathira	
Statistical N	Mechanics: Huang	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Duction in ocience with raybles us major subject	

Suggested Continuous Evaluation Methods:	
Course Prerequisites Passed Semester VII with Physics as major	

Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN PHYSICS)	
Programme: BACH		EMESTER III EL3(2)
	Subject: Physics	
Course code	Course Title: Bio Physics	
- ·	Course Outcomes: e field that applies the theories and methods of physics to und s work.The student"s knowledge can be used in the sector relater	
Credits: 4		Elective
Max. Marks: 10 External Exam: Internal assessm	75 ent: 25	Min. Passing Marks: 36
Total No. of Lectur	es-Tutorials-Practical (in hours per week): 4-0-0	
UNIT UNIT I	TOPIC Basic Concepts in Biophysics	No. of Lectures
	Elementary ideas about the DNA structure, Forces stabilizin, DNA and protein structure, sugar-phosphate backbone nucleosides and nucleotides, three dimensional DNA structure, RNA. Proteins: primary, secondary, tertiary and quaternary structures, enzymes and their catalytic activity DNA and protein folding, DNA denaturation, replication, mutation, intercalation, neurotransmitters, membranes.	A d
UNIT II UNIT III	 Technique for The Study of Biological Structure and Function Application of experimental techniques of light scattering (tomography), FTIR and Raman spectroscopy, absorption and fluorescence spectroscopy/ microscopy, anisotropy optical activity, circular dichroism, electrophoresis,. Photobiology interaction of light with cell and tissues Photosynthesis, human eye and vision optical biopsy, optical biosensors, Laser tweezers and Laser Scissors Photo dimerization, 	, , 1
UNIT IV	Photodynamic therapy. Radiation Effects on Biological Systems High doses received in a short time, Low-level doses limits direct ionization of DNA, radiation damage to DNA Biological effects (Genetic, Somatic, Cancer and sterlity) Bio-imaging: Ultrasound, MRI imaging, confoca fluorescence imaging and X-ray.	
	Suggested Readings:	
Essentials	of Biophysics: P. Narayanan.	
Basic Mole	ecular Biology: Price.	

Quantum Mechanics of Molecular Conformations: Pullman (Ed.).	
Non-linear Physics of DNA: Yakushevich.	
Biological Physics: Nelson. Spectroscopy of biological systems Modern	
Spectroscopy: J.M. Hollas.	
Transmission Electron Microscopy of Metals: Gareth Thomas	
Elements of X-ray Diffraction: Bernard Dennis Cullity.	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

		BACHELOR (RESEARCH IN	PHYSICS)	
Programme: BACH	ELOR	(RESEARCH IN PHYSICS)	YEAR IV	SEMESTER VIII
				EL3(3)
		Subject: Physics		
Course code		Course Title	: Medical Physics	
		Course Outcomes:		
Medical Physics i	is a bi	ranch of science that uses the m	nethods of physics t	to study biological
processes and also	worki	ing of the instruments and machin	es used in Medical S	Science
.Physics uses math	nemati	cal laws to explain the natural wo	orld, and it can be ap	plied to biological
organisms and sy	stems	to gain insight into their worki	ngs. The course in	cludes Physics of
Respiratory and C	Cardio	vascular System, Electricity in	the Body and Sour	nd/Light and also
Equipment's and N	Modern	n Medicines . The course opens fut	ure prospects of the	student in the field
of Medical Science		*		
Credits: 4				Elective
Max. Marks: 100				Min.
External Exam: 7	75			Passing
Internal assessme	Infernal assessment: 25			Marks:
				36
Total No. of Lecture	es-Tuto	rials-Practical (in hours per week): 4	-0-0	
UNIT		TOPIC		No. of
				Lectures

UNIT I	Mechanics of Human Body Static, Dynamic and Frictional forces in the Body, Composition, properties and functions of Bone, Heat and Temperature, Temperature scales, Clinical thermometer, Thermography, Heat therapy, Cryogenics in medicine, Heat losses from Body, Pressure in the Body, Pressure in skull, Eye and Urinary Bladder.	15
UNIT II	 Physics of Respiratory and Cardiovascular System Body as a machine, Airways, Blood and Lungs interactions, Measurement of Lung volume, Structure and Physics of Alveoli, breathing mechanism, Airway resistance, Components and functions of Cardiovascular systems, work done by Heart, Components and flow of Blood, Laminar and Turbulent flow, blood Pressure, direct and indirect method of measuring, Heart sounds. 	15
UNIT III	Electricity in the Body and Sound/Light In Medicine Nervous system and Neuron, Electrical potentials of Nerves, Electric signals from Muscles, Eye and Heart, Block diagram and working to record EMG, Normal ECG wave form, Electrodes for ECG, Amplifier and Recording device, Block diagram and working to record ECG, Patient monitoring, Pace maker. General properties of sound, Stethoscope, Generation, detection and characteristics of Ultrasound, Ultrasound imaging technique, A scan and B scan methods of ultrasound imaging,	15

	properties of light, Applications of visible UV, IR light, and Lasers in medicine, Microscope, Eye as an optical system, Elements of the Eye, Ophthalmology Instruments.	
UNIT IV	Diagnostic X-Rays and Nuclear Medicine Production and properties of X-rays, Basic Diagnostic X-ray Machine, X-ray image, Live X-ray image, X-ray computed Tomography, Characteristics of Radio activity, Radioisotopes and Radio nuclides, Radioactivity sources for Nuclear medicine, Basic Instrumentation and clinical applications, Principles of Radiation Therapy, Nuclear medicine imaging devices, Radiation sources.	15
	Suggested Readings:	
Medical I	Physics by Department of Physics, St. Joseph's College, Trichy-2.	
Medical P	hysics by John R. Cameron and James G. Skofronick, John Wiley & Sons.	
	ok of Biomedical Instrumentation : R.S.Khandpur, Tata McGraw Hill n Co., Delhi, 1987.	
	Can be opted by	
	Bachelor in Science with Physics as major subject	

Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN	PHYSICS)	
Programme: BA	CHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTERVIIIE
			L3(4)
	Subject: Physics		
Course code		nospheric Physics	
	Course Outcomes:		
	oduces students to Earth- Atmosphere and Meteo		
	imate change etc. The course is useful for the stu		
-	wants to pursue his/her career in the field of envir	conmental science.	The course is also very
important for R	a D purposes.		
Credits: 4			Elective
Max. Marks:	100		Min. Passing
External Exa	m: 75		Marks: 33
Internal assessment: 25			
Total No. of Le	ctures-Tutorials-Practical (in hours per week): 4	-0-0	
UNIT	ТОРІС		No. of Lectures
UNIT I	Introduction to Earth Atmosphere and	Meteorology	15
	Elementary concept of atmospheric science		it
	composition, Thermal and pressure variation in earth atmosphere, Thermal structure of the troposphere, stratosphere, mesosphere and		
			ıd
	ionosphere, Hydrostatic equation, spectral dis		
	radiation, Green house effect and effective		
	Meteorological process and different sy		
	monsoons, fogs, clouds, precipitation, Cyclon	es and anti- cyclone	s,
	thunderstorms, Mountain Meteorology		
UNIT II	Atmosphenic Dynamics and Thermody	-	15
	Atmospheric Dynamics and Thermodyn		15
	Introduction to atmospheric dynamics, Basic of		
	Applications of the basis constinue simula	tions and wontiniti-	
	Applications of the basic equations, circula	•	
	Atmospheric oscillations, The general cir	culations, Tropical	
	Atmospheric oscillations, The general cir dynamics, Thermodynamical consideration	culations, Tropical ns, Adiabatic and	
	Atmospheric oscillations, The general cir dynamics, Thermodynamical consideration isothermal processes, equation of state for	culations, Tropical ns, Adiabatic and dry and moist air,	
	Atmospheric oscillations, The general cir dynamics, Thermodynamical consideration isothermal processes, equation of state for	culations, Tropical ns, Adiabatic and	

UNIT III	Environmental pollution and climate change Atmospheric pollution, type of pollutants, various sources of emissions, Trace gages, Production and loss processes of stratosphere ozone, Tropospheric ozone, Role of trace gases and their budget, motion of air-masses (back-air trajectory), tools for modeling (Box model and 3-D model), Atmospheric aerosols, classification and properties, concentration and size distribution, Absorption and scattering of radiation, optical phenomena in atmospheric, Modeling for aerosols, Estimations of radiative forcing. Definition of climate long term changes, possible causes of climate change-External and internal, General idea of internal dynamical processes of the atmosphere, climate modeling, Review of various climate models.	15
UNIT IV	Instrumentation and Observational TechniquesConvectional measurements of pressure, temperature, humidity, windspeed and direction, sunshine duration, radiation clouds,upper air pressure, temperature, humidity and windmeasurements, Polit balloons, radiosonde, dropsonde, ozonesonde,GPS sonde. Application of radars to study the atmosphericphenomenon, LIDAR, SONAR, RASS (Radio- acoustic soundingsystem), Observational technique for aerosol.	15
	Suggested Readings:	
	S. Pettersen: An Introduction to meteorologyH. R. Byer: General Meteorology Miller, Thompson and Paterson: Elements of meteorology	
	J. M. Wallau and P. V. Hobbs: Atmospheric Science	
	J. A. Ratchiffe: Physics of upper atmosphere	
	R. B. Stull: An introduction to boundary layer Meteorology	
	D. H. Lenschow: Probing the atmospheric boundary	
	D. H. Lechow: Intruments and Techniques for probing the atmospheric boundary layer	
	A.A. Tsonis: An introduction to atmospheric Thermodynamics	
	H. J. Critchfield: General Climatology G. T. Trewartha: An introduction to climate	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VII with Physics as major	

Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	BACHELOR (RESEARCH IN		
Programme: BA	CHELOR (RESEARCH IN PHYSICS)	YEAR IV	SEMESTERVIIIE
			L3(5)
Carrier	Subject: Physics	4	49
Course code	Course Title: Nano Ma Course Outcomes:	terials and Applica	uions
This course in		ir cunthasis and	pharacterization On
	troduces the essence of nano materials, the npletion of the module students should al	-	
	electron transport phenomenon in nanostr		•
	f nano materials used in this technological er		wers rew important
applications of	nano materiais usea in tins technological el	.a.	
Credits: 4			Elective
Max. Marks:	100		Min. Passing
External Exa	m: 75		Marks: 33
Internal asses	sment: 25		
Total No. of Lee	ctures-Tutorials-Practical (in hours per week): 4-	-0-0	
UNIT	ТОРІС		No. of Lectures
UNIT I	Nanoscale Systems		15
	Density of states (1-D,2-D,3-D). Length	n scales in physic	cs,
	Nanostructures: 1D, 2D and 3D nanostruc	tures (nanodots, th	in
	films, nanowires, nanorods), Band struc	ture and density	of
	states of materials at nanoscale, Size Effe	•	
	Applications of Schrodinger equation- In:	-	
	potential step, potential box, quantum con		ers
	in 3D, 2D, 1D nanostructures and its const	equences.	
UNIT II	Synthesis of Nanostructure Materials		15
	Metals, Metal Oxide, Carbon based nanor	naterials CNT Co	
	graphene. Top down and Botton		
	Photolithography. Ball milling. Gas p		
	Vacuum deposition. Physical vapor depos		/11.
			1
	Thermal evaporation, Chemical vapor dep Gel. Spray pyrolysis. Hydrothermal sys		
	through colloidal methods. MBE growth	·	
	Ray Diffraction. Optical Microscopy.	-	
	Microscopy. Transmission Electron M	÷	
	Force Microscopy. Scanning Tunneling M	* •	
	i oree mieroscopy. Seaming i amening i	lieroscopy.	

UNIT III	Optical Properties	15
	Concept of dielectric constant for nanostructures and charging	
	of nanostructure. Quasi-particles and excitons. Excitons in	
	direct and indirect band gap semiconductor nanocrystals.	
	Quantitative treatment of quasi-particles and	

	excitons, charging effects. Radiative processes: General formalization-absorption, emission and luminescence. Optical properties of heterostrctures and nanostructures.	
UNIT IV	Electron Transport and Applications of Nanoparticles Carrier transport in nanostructures. Coulomb blockade effect, thermionic emission, tunneling and hopping conductivity. Defects and impurities: Deep level and surface defects. Applications: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron transfer devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots -magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).	15
C P Poole It	Suggested Readings: r. Frank J.Owens, Introduction to Nanotechnology (Wiley India	
Pvt. Ltd.).	Trank 5.0 wens, introduction to Transcermology (whey india	
S.K. Kulkarni, Company)	Nanotechnology: Principles & Practices (Capital Publishing	
	adhyay and A. N. Banerjee, Introduction to Nanoscience and	
-	PHI Learning Private Limited).	
	Nanoelectronics, V.V. Mitin, V.A. Kochelap and M.A.	
	, Cambridge University Press.	
Richard Booke	er, Earl Boysen, Nanotechnology (John Wiley and Sons).	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VII with Physics as major	

Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS			
Programme: MASTER IN	PHYSICS	YEAR V	SEMESTER IX
			PAPER I
Subject: Physics			
Course code	Course Title: Advanced	Quantum Mech	anics
Course Outcomes:			

The course includes the study of scattering theory, identical particles, relativistic wave equations and quantization of wave fields. The course would describe the nature and behaviour of matter and energy at subatomic level. In particular, theory of scattering gives an understanding collision between a quantum mechanical particle and target. The study of relativistic quantum mechanics enables the students to understand the behaviour of objects moving with speeds comparable to that of light. The knowledge of this field forms the foundation for pursuing research in Quantum Field Theory and High Energy physics.

Credits: 4		Core
		Compulsory
Max. Marks: 100		Min.
External Ex	am: 75	Passing
Internal asso		Marks: 36
Total No. of L	ectures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	TOPIC	No. of
		Lectures
UNIT I	Free particle Dirac equation	15
	Discrepancies faced by Schrödinger equations, Klein-	
	Gordon equation and its drawbacks, Dirac's equation for a	
	free particle, Dirac matrices, covariant form of Dirac equation,	
	Probability and current densities, Free particle solutions of	
	Dirac equation, Non conservation of Orbital Angular	
	momentum and idea of spin, Interpretation of negative energy	
	and hole theory	
UNIT II	Dirac particle in Electromagnetic Fields	15
	Dirac equation in electromagnetic fields, Magnetic moment of	
	charged particle, Gauge invariance of Dirac equation in	
	electromagnetic fields, Non- relativistic correspondence of	
	Dirac equation; Pauli equation, Adjoint spinors,	
	Symmetries of Dirac Equation: Parity, Time reversal and	
	Charge Conjugation; Lorentz covariance of Dirac	
	Equation, , Bilinear covariants	

UNIT III	Identical Particles and Quantum Field Theory	15
	Identical particles, exchange degeneracy, symmetric and anti	10
	symmetric functions for many particle system	
	Classical Fields, Schwinger's action principle, Lagrangian	
	and Hamiltonian densities, Field equation, quantum	
	structure of free fields and the particle concept,	
	Quantization relations, Quantization of non relativistic	
	Schrödinger matter field, System of identical bosons and	
	fermions, Commutation and anti-commutation relations,	
	Occupation number representation, creation and annihilation	
	operators.	
UNIT IV	Quantum Theory of Scattering	15
01/22 27	Scattering Theory, Scattering cross section, method of partial	
	wave analysis, phase shift, Optical theorem, scattering length,	
	effective range theory; low energy scattering, Resonance,	
	scattering from a square potential well and a rigid sphere,	
	Born approximation, Validity of Born approximation, Born	
	approximation through time dependent perturbation, its	
	application to square well potential.	
	Suggested Readings:	
	Davydov: Quantum Theory Messiah : Quantum Mechanics Vols. I &	
	П	
	Rajput B. S.: Advanced Quantum Mechanics	
	Ropman P.: Advanced Quantum Mechanics Trigg: Quantum Mechanics	
	Thankappan V. K.: Quantum Mechanics Sakurai J.J.: Quantum Mechanics	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Pronoquisites	
	Course Prerequisites Passed Semester VIII with Physics as major	
	Suggested Equivalent Online Courses:	
-	pen Learning - Massachusetts Institute of Technology,	
	arning.mit.edu/	
	al Programme on Technology Enhanced Learning	
	os://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	·	
https://www.sv	wayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme: MASTER IN PHYSICS YEAR V			SEMESTER IX PAPER II a
	Subject: Physics		
Course code	Course Title: Co	omputational Pl	nysics
	Course Outcomes:		
0	on Computational Physics has been framed to ec		•
	dge of roots of equation, interpolation, curve	-	
numerical inte	egration, solution of ordinary differential equation	ons and probab	ility.
Credits: 4			Core
			Compulsory
Max. Marks	: 100		Min. Passing
External Exa	am: 75		Marks: 36
Internal asse	essment: 25		
Total No. of Le	ectures-Tutorials-Practical (in hours per week): 4-0-0		
LINIT	торис		No. of Lectures
UNIT UNIT I	TOPIC	tal Farration	
UNITI	Roots of Algebraic and Transcender		
	Element of computational techniques: roots of functions, Interpolation, Extrapolation, One point and two-point		
		·	
	iterative methods such as bisection method and Newton Raphson methods.		
	Raphson methods.		
UNIT II	Integration and Differential:		15
	Integration by Trapezoidal and Simpson's	rule, Solution c	f
	first order differential equation using	g Runge-Kutt	a
	methods, Finite difference methods. Dat	-	
	and Error analysis: Dimensional analysis		d
	accuracy, error analysis, Propagation and e	errors.	
UNIT III	Loost gavono fittiv z:		15
	Least square fitting: Least square fitting, Linear and nonlinear	ourva fitting	
	square test. Random numbers: Introduc	Ũ	
	numbers, Monte Carlo method for		
	generation. Probability Theory: Elemen		
	theory, Random variables, Binomial, point	• •	•
	distributions, Central limit theorem.	soon and norm	
	distributions, contrar minit moorem.		

UNIT IV	Materials Modelling through VASP and SIESTA: Basis Sets: plane waves versus numerical atomic orbitals basis sets, Pseudopotentials: ultrasoft versus norm conserving pseudopotentials. Numerical solutions of KohnSham equations, Diagnolization procedure, SCF cycles and mixing scheme, Smearing: Gaussian, Fermi and Methfessel-Paxton smearing. SIESTA and VASP package to perform: electronic structure calculations, relaxation of atomic positions and unit cell parameters. Structural properties: equilibrium lattice constant, cohesive energy, bulk modulus.	18
Practica	Suggested Readings: . Sholl and Janice A. Steckel, Density Functional Theory: A l Introduction (John Wiley and Sons, 2009). ee, Computational Materials Science: An Introduction, (CRC 11) 3.	

 C. Kittel, Introduction to Solid State Physics (Wiley India (P) Ltd., New Delhi, India) 2007 	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS				
Programme: MASTER IN PHYSICS YEAR V SEMESTER			SEMESTER IX	
			PAPER II b	
	Subject: Physics			
Course code	Course code Course Title: Plasma Physics			
	Course Outcomes:			
The course includes Magneto Hydrodynamics, Plasma Propagation and other topics related to plasma. Plasma physicists study plasmas, which are considered a distinct state of matter and occur naturally in stars and interplanetary space. The knowledge acquired by the student can be used in various field of Physics and thus career prospects are bright in the field of research.				
Credits: 4			Core	
			Compulsory	

Max. Marks: External Exa		Min. Passing Marks: 36
Internal asses		
Total No. of Le	ctures-Tutorials-Practical (in hours per week): 4-0-0	l
UNIT	TOPIC	No. of Lectures
UNIT I	Introduction to PlasmaElementary concept ofplasma:DebyeShielding, Plasma parameters, Drift of guidingcenter, Gradient drift, Curvature drift, Magnetic mirror,Plasma confinement	15
UNIT II	Magneto-Hydrodynamics and Fluid Plasma Plasma Oscillation, Fluid equations for a plasma, Continuity equation, Wave Propogation in unmagnetized plasma, Magneto Hydrodynamics , Hydrodynamical description of Plasma: fundamental equation, Concept of convective derivative, hydromagnetic waves, magneto- sonic and Alfven waves.	15
UNIT III	Magneto PlasmaWave phenomena in Magneto plasma: Polarization, Phasevelocity, group velocity, cutoff, resonance forelectromagnetic wave propagating parallel andperpendicular to the magnetic field Helicon, Faradayrotation,.	15
UNIT IV	Electromagnetic Wave Propagation in Plasma Propagation at finite angle and CMA diagram, Propagation through ionosphere and magnetosphere Derivation of moment Equation from Boltzmann Equation, Momentum balance equation, Equations of state, Two-fluid equations, Plasma resistivity Suggested Readings:	15
	Jackson: Classical Electrodynamics; Wiley Estern, New Delhi Rittancourt: Plasma Physics Chan: Plasma Physics	

Bittencourt: Plasma Physics Chen: Plasma Physics
Robert J Goldston and Paul H. Rutherford: Introduction to Plasma Physics
Can be opted by
Bachelor in Science with Physics as major subject
Suggested Continuous Evaluation Methods:
Course Prerequisites
Passed Semester VIII with Physics as major

Suggested Equivalent Online Courses:	
4. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
5. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 6. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN P	HYSICS			
Programme: M	ASTER IN PHYSICS	YEAR V	SEMESTER IX PAPER III a (Specialization paper)		
	Subject: Ph				
Course code	Cours	se Title: Advanced El	ectronics- I		
circuits . The co and non-linear a integrated circu	Course Outco os the students to gain basic ideas of the course includes the study of IC technology analog systems. The course is of much pr it technology which has wide applications systems, digital instruments etc.	onstruction and working, Operational amplified actical purpose for the	er as linear A e students to	Analog systems learn basics of	
Credits: 4			Core	Compulsory	
Max. Marks: 100 N				in. Passing arks: 36	
UNIT	TOPIC	ΤΟΡΙΟ			
UNIT I UNIT II	 Transmission Lines: Types of transmission lines, transmission constant and its physical and attenuation, characteristic implementation less and low termination by (i) zero load or specific standing wave ratio. Propagation of Radio Waves: Group Constant and State Stat	15			
UNIT III	wave propagation (ionosphere & Larmor theory, magneto ionic theory skip distance and maximum usable Amplitude Modulation & Dem	15			
	Transmitters: Need for modulation, type of modulation, amplitude modulators (square law diode & collector modulation methods), amplitude demodulators (square law & envelope detectors), DSB-SC system (balanced modulator and synchronous detector), SSB-SC signal (frequency & phase discrimination method of modulation and demodulation), VSB signal (filter & phase discrimination method of modulation), AM receivers (TRF & superheterodyne, AGC), AM transmitter.				
UNIT IV					

Suggested	Readings:	Antennas	and	Wave		
Propagation', J.D. Kraus, R.J. Marhefka and A.S. Khan,						
ТМН						
'Communication Systems: Analog & Digital', R.P. Singh and S.D. Sapre, TMH						
Antenna & Wave Propagation', K.D. Prasad, Satya Prakashan, New Delhi. Mcgraw Hill						
Millman and Halkias: Electronic Fundamentals & Applications, Tata Mcgraw Hill						
Millman and Halkias: Integrated Electronics						
K.R. Botkar: Integrated Circuits, Khanna Publishers G.K.						
Mithal and Ravi Mittal: Electronic Devices & Circuits, Khanna Publishers						
Roychaudhary and Jain: Operational Amplifier & Linear Integrated Circuits						
V.K. Mehta: Electronics for Scientists & Engineers Robert J Goldston and Paul H. Rutherford: Introduction to Plasma Physics						

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

		MASTER IN			
Programme:	MASTER IN PHY	SICS	YEAR V	S	EMESTER IX
				P.	APER III b
				(s	pecialization
					aper
		Subject: 1	Physics		1
Course code			Course Title: Astrop	physics –I	
		Course Ou	tcomes:		
	-	nt to understand the	-	•	
astrophysic	s, and physics of	f solar system and	extra solar planet	ts. The cour	se provides a
opportunity	to understand the	optics of the differen	nt astronomical inst	truments suc	h as: telescopes
CCD camer	a etc. It has wide	spared in use of R&	D sector.		
Credits: 4		•			Core
Cleans. 4					Compulsory
Mar Mari	100				
Max. Marl					Min.
External E					Passing
	sessment: 25				Marks: 36
Total No. of	Lectures-Tutorials-	Practical (in hours per	week): 4-0-0		1
UNIT		TOPI	2		No. of
					Lectures
UNIT I	•	nomy Celestial sphe		•	
	(equatorial and				
	and declination,				
	and winter solst	ice, seasons. Distan	ce measurements:	AU, parsec,	
		es, distance measu		-	
		ces to open clusters)	•••		
	(paranax, distan				
UNIT II	Solar System I	dea of solar system	n Study of plane	ts and their	15
	-	-Moon system, tid			
		•			
		ir origin, composit		u evolution,	
	extra solar plane	ets and their detectio	n.		
UNIT III	Telescopes: Bas	ic Optics, Types of t	elescopes. Telesco	pe mounting	15
	*	al telescopes, Infra	^		
	•	-		-	
		escopes. Schmidt	_	_	
	-	struction of a simple		. Active and	
	adoptive optics	in astronomical stud	у.		
	Sky charts and t	heir importance.			
UNIT IV	Classification of	f detectors, characte	eristics of detector	s. Detectors	15
		infrared wavelengtl			
	-	-	-		
	-	e (CCD). sensitivit		-	
		e, Johnson noise, si	-		
		stellar imaging, pl	-		
	Importance	of space based	d astronomy. O	bservational	
					1
	techniques of as	tronomical sources	from space in		

infrared, EUV, X-ray and Gamma-ray of the regions electromagnetic spectrum.	
Suggested Readings:	
Abhyankar K. D.: Astrophysics, Galaxies and Stars	
Vaidyanth Basu: An Introduction to Astrophysics	
Motz: Astrophysics	
K S Krishnaswamy: Astrophysics: A Modern Perspective	
W. M Smart: Spherical Astronomy	
Mark A. Garlick: The Story of the Solar System	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS				
Programme: MASTER IN PHYSICS YEAR V SEMESTER				
		PAPER III c		
Subject: Physics				
Course Title: High	Energy Physics- I			
Course Outcomes:				
	-	x		
	PHYSICS Subject: Physics Course Title: High I Course Outcomes: Inderstand the complex properties and I. This course would encourage stu	PHYSICS YEAR V Subject: Physics Course Title: High Energy Physics- I Course Outcomes: Course Outcomes: understand the complex properties and behaviour of high 1. This course would encourage students to peruse h		

Credits: 4		Core	
		Compu	ulsory
Max. Mark	s: 100	Min.	Passing
External Ex	xam: 75	Mark	s: 36
Internal ass	essment: 25		
Total No. of I	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	TOPIC	No	. of
		Le	ctures

UNIT I	Quantization of Scalar Fields Lagrangian Formulation, Hamiltonian and momentum densities, Neutral and Charged scalar fields and their quantization, Momentum representation and frequency splitting, Identification of various particle operators, Charge operator, Algebra of field operators, Invariant delta function and its representations, Covariant commutation relations and their properties.	15
UNIT II	Quantization of Spinor Field Lagrangian formulation for Spinor field, Hamiltonian and momentum densities, Quantization of Spinor Field, Momentum representation and frequency splitting, Identification of various particle operators, Charge operator for Spinor field, Algebra of Spinor field operators, Covariant form of anti-commutation relations.	15
UNIT III	Quantization of Electromagnetic Field Classical electromagnetic field theory and its gauge formulation, Covariant Lagrangian formulation for EM field, Quantization of EM field, Momentum representation and frequency splitting,	15
UNIT IV	Identification of various particle operators, Concept of longitudinal, temporal and transverse photons, Covariant commutation relations for EM potential operators, Problems with temporal photons and Lorentz condition, Resolution through Gupta- Bleular formulation	15
	Suggested Readings:	
	L. Ryder: Quantum Field Theory	
	B. K. Agarwal: Quantum Mechanics and Field Theory	

F Mandel and Shaw: Quantum Field Theory	
P. Roman: Quantum Field Theory	
A. Das: Quantum Field theory	
M. E. Peskin, D.V. Schroeder: An Introduction to Quantum Field Theory	
B.S.Rajput : Advanced Quantum mechanics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	

Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

		MAST	ER IN PHYSICS		
Programme	: MASTER IN	PHYSICS		YEAR V	SEMESTER IX PAPER III d
		Sul	bject: Physics	·	
Course code	9		Course Title: S	pectroscopy-I	
	nd technology.	ould study the variou	rse Outcomes: us types of lasers, La d by the course will	1 1.4	11
Credits: 4					Core Compulsory
Max. Mar External I Internal a					Min. Passing Marks: 36
Total No. of	f Lectures-Tutor	ials-Practical (in ho	urs per week): 4-0-0		
UNIT		r	ГОРІС		No. of Lectures
UNIT I	symmetric, selection ru rotation sp Positive and molecules,	spherical and asy les for linear mo ectra, Molecular l negative charac	al energy level po ymmetric top mol plecules, Stark eff rotation-nuclear ter of the wave for ymmetric character r molecule.	ecules, rotational fect in molecular spin coupling, unctions of linear	
UNIT II	coupling of bands, Norr coordinates calculation CO ₂ molec	rotation and vil nal modes of vibra normal coordina of vibrational freq ales, anharmonici nversion doubling	ion spectra of poly bration, perpendic ation and their ana ates and their inte quencies and force ty, degenerate an g, Quantized Vibr	ular and parallel llysis in Cartesian ernal coordinates, field of H ₂ O and d non-degenerate	
UNIT III	Molecules: Diatomic M 1Σ transition	Coupling of Electronic Coupling of Electronic Coupling of Electronic Coupling and Rota	copy of Diatomic a ronic and Rotation ational structure of ction and Herzberg ne vapour.	al motion in $1\pi - 1\Sigma$ and $1\Sigma -$	15

UNIT IV	Single vibronic level spectroscopy and lifetime of vibronic levels in benzene, Quantum yield, Kasha Rule and the concept of nonradiative transitions in molecules, Jablanski diagram and qualitative treatment of small molecule and large molecule limit for nonradiative transitions.	15
	Suggested Readings:	
	C.N. Banwell: Fundamentals of Molecular Spectroscopy	
	Walker and Stranghen: Spectroscopy Vol. I, II, & III	
	Herzberg: Spectra of diatomic molecules Jeanne	
	L. Mchale: Molecular Spectroscopy	
	P.F. Bemath: Spectra of atoms and molecules	
	J.M Holias: Modern Spectroscopy	
	K. Thyagrajan and A.K. Ghatak: Lasers: Theory and applications A Yariv: Quantum Electronics	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites Passed Semester VIII with Physics as major	
	Suggested Equivalent Online Courses:	
	nlearning.mit.edu/ onal Programme on Technology Enhanced Learning	
	https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
https://www	w.swayamprabha.gov.in/index.php/program/current_he/8	

		MASTER IN PHY	YSICS		
Programme:MA	ASTER IN PHYS	ICS	YEAR V		ESTER IX
				PAP	ER IIIe
		Subject:Physi	cs		
Course code		CourseT	itle:-Condensed Matte	er Phy	vsics-I
		Course Outcom			
	•	00	ng the principles and co	-	
1.		A	nain of the crystal defe		• 1
-			edge behind energy bar	id theo	ory. The present
course also e	enables the conce	pt of dielectrics among	the students.		
Credits:4				Core	Compulsory
Max.Marks:	100			Min	•
ExternalExa	m:75				singMar
Internalasses				ks:3	6
TotalNo.ofLect	ures-Tutorials-Pra	ctical(inhoursperweek):4-	-0-0		
UNIT		TOPIC			No. of
UNIT I	Els -4				Lectures 16
UNITI		perties of Solids:	nia Danny model for	hand	10
	-	· ·	nig-Penny model for s, Physical interpretati		
	•		metals, Semiconductor		
			n, Density of electro		
		•	valence bands, Donc		
		-	d p-type semicondu		
	MetalSemicond	•	a prope semiconau		
UNIT II		electrical properties o	f insulators:		14
			constants, static, elect	tronic	
	^	•	, orientational polariz		
	·	•	constant, Complex diel		
			time, Optical absorption		

UNIT III	Magnetism:	15
	Dia, Para and ferromagnetism, Langvin's theory of paramagnetism,	
	Ferromagnetism, Quantum theory of dia and para magnetism,	
	Weiss molecular theory, Ferromagnetic domains, Anti-	
	ferromagnetism, Neel's theory, Two sub-lattice model, ferrites.	
UNIT IV	Defects in crystals:	15
	Point defect, Impurities, Vacancies, Frenkel defects, Schottky	
	defects, Intrinsic vacancies, Concentration of Schottky defects,	
	Concentration of frankel defects, extrinsicvacancies, Diffusion,	
	Colour centres, F-Centre, V-Centre, dislocation, Line defects, edge	
	dislocation, screw dislocation, Burger vector.	
	SuggestedReadings:	
1. Kittel C.,	Introduction to Solid State Physics, Willey Publication, 2008.	
2. Ziman J.N	1, Principles of theory of solids, Cambridge University Press, 2013.	
3. Callaway	J., Quantum theory of solids, Elsevier, 1976.	
4. Dekker A	J., Solid State Physics, Prentice Hall, 1962.	
5. Animalu A	A.O. E, Intermediate Quantum theory of crystalline solids,	
PrenticeH	all, 1977.	

	Can be opted by	
7	7. Saxena A. K., Solid State Physics, Laxmi Publication, 2017.	
	Winston, 1976.	
6	5. Ashcroft N. W. and Mermin N. D., Solid State Physics, Holt, Rinehart and	

	MASTER IN PHYSICS		
Programme: M.	ASTER IN PHYSICS		EMESTER II APER IV a
	Subject: Physics		
Course code	Course Title: Advan	ced Electronics- II	
communicatio	Course Outcomes: nelps the students to gain basic ideas of the n, memory and optoelectronic devices. The cou- learn advanced concepts of digital communication	rse is of much praction	-
Credits: 4			Core
Max. Marks: External Exa Internal asses Total No. of Lea	m: 75)	Compulsory Min. Passing Marks: 36
UNIT	ТОРІС		No. of Lectures
UNIT I	 Modulation Techniques: Angle modulation (PM & FM), relation be FM generation (direct, varactor diode & remethods), frequency demodulators (slop & method), pulse modulation (PAM & PWM discretization in time and amplitude, concepulse code modulation (PCM), basic idea and digital signal processing. 	eactance tube t balanced slope 1) and demodulation, ept of quantization,	15
UNIT II	Microwave production and Microwav Microwave frequencies, advantages of mic conventional electronic devices at measurements devices and instrumentat power, principle of velocity modulation, reflex klystron, transferred electron device diodes (GaAs diode only): RWH theory Satellite communication.	crowaves, limitation of UHF, microwaw ion, measurement of two cavity klystron es (TEDs), Gunneffeo	of e of n, ct
UNIT III	Fiber Optics: Evolution of fiber optics, advantages and c acceptance angle, numerical aperture, p waves in step index and graded index fiber and configurations, attenuation in optical detectors and their characteristics, opt system, optical fiber sensors: intens interferometric optical fiber sensors.	propagation of light s, optical fiber modes fibers, light sources tical communication	

UNIT IV	Power Supply Regulation: Load regulation, line regulation	15
	and output resistance of a power supply, shunt & series	
	regulators and their short circuit protection, monolithic linear	
	regulators: classification, LM78XX & LM79XX series,	
	regulated dual supplies and adjustable regulators, current	
	boosters and their short circuit protection, unregulated DC to	
	DC converters, switching regulators: buck, boost and buck-	
	boost regulators, Precision rectifier.	

Suggest	ed Readings:			
1.	'Electronic Principles'- A.P. Malvino, TMH Publishing Company Limited.			
2.	'Microwave Devices and Circuits' - S.Y Liao, PHI Private Limited.			
3.	'Microwave and Radar Engineering' - M. Kulkarni, Umesh Publications.			
4.	'Communication Systems - Analog & Digital', R.P. Singh and S.D. Sapre, TMH			
5.	'Fundamentals of Fiber Optics in Telecommunication and Sensor, Ed B. Pal, New Age International (P) Limited.			
6.	'Optical Fiber Communications, Principles and Practice', J.M. Senior, Pearson Education			
7.	'Optical Fiber Communications', G. Keiser, TMH Publishing Company Limited.			
Can be o	opted by			
Bachelo	r in Science with Physics as major subject			
Suggested Continuous Evaluation Methods:				
Course Prerequisites				
Passed S	Semester VIII with Physics as major			
Suggest	ed Equivalent Online Courses:			
1.	MIT Open Learning - Massachusetts Institute of Technology,			
https://	/openlearning.mit.edu/			
2.	National Programme on Technology Enhanced Learning			
(NPTE	EL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha			
- DTH	Channel,			
https://	/www.swayamprabha.gov.in/index.php/program/current_he/8			

Programme: MASTER IN PHYSICS YEAR V SEMESTER II					
		PAPER IV b			
	Subject:	Physics			
Course code Course Title: Astrophysics –II					
Course Outcomes:					
The Course will provide the deeper understanding of the radiative transfer and the interaction of					
radiation with matter. It would be important to understand the physics of the death of stars. This					
study is crucial for the deeper knowledge of the neutron stars, white dwarfs and black holes. Their					
study provides the insight for the gravitational waves.					
study provides the insight for the gravitational waves.					
study provides the					

Max. Marks: External Exam Internal asses	Min. Passing Marks: 36	
Total No. of Leo	ctures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT UNIT I	TOPICRadiation transfer: Definitions of specific intensity, mean intensity, flux and energy density; Equation of radiation transfer; solutions in some specific cases, optical depth; Thermal emission; Blackbody spectrum and its characteristics; Kirchoff's law; Einstein coefficients.	No. of Lectures
UNIT II	Interior Properties of Stars Hydrostatic equilibrium, Virial theorem, Polytrophic indices, Lane – Emden equation LTE, Radiative equilibrium, stability condition of convective and radiative equilibrium, Continuous spectra of stars, Stellar opacity, limb darkening, line blanketing, theory of Fraunhofer lines, curve of growth and line broadening.	15
UNIT III	Elementary theory of white dwarfs, Chandrashekhar's limit for white dwarf stars, neutron stars their birth and properties, Pulsars, black holes, low medium mass star and high mass stars, death of high mass stars, supernova remnants	15
UNIT IV	AGNs and Quasi-stellar Objects Theory of AGNs, Syferts, quasars and their energy generation and redshift anomaly. Different AGN models, radio lobes and jets, Gamma ray bursts.	15
	Suggested Readings:	
	Abhyankar K.D.: Astrophysics, Galaxies and Stars Vaidyanth Basu: An Introduction to Astrophysics motz: Astrophysics A. R. Choudhuri : Astrophysics for Physicists	
	B. D. Abhyankar: An Introduction to Astrophysics	
	T. Padmanabhan : Astrophysical Processes Can be opted by	
Т	Can be opted by Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	

Course Prerequisites Passed Semester VIII with Physics as major

Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MAS	TER IN PHYSICS YEAR V	SEMESTER IX
		PAPER IV c
Course code	Subject: Physics Course Title: High Energy Physics-II	
Course coue	Course Outcomes:	
The course would p	rovide the knowledge of basic building blocks of matter and its com	plex properties. The
	e able to know the complicated theory of Higgs mechanism which	
	HC experiment in the year 2012.It would open doors for the student	
in the field of HEP.		
Credits: 4		Core
		Compulsory
Max. Marks: 10		Min. Passing
External Exam:		Marks: 36
Internal assessm		
Total No. of Lectur	es-Tutorials-Practical (in hours per week): 4-0-0	
		N. 67
UNIT	TOPIC	No. of Lectures
UNIT I	Lie Groups and Lie Algebra Symmetries, Groups and	
	conservation laws, Lie groups and their generator,	
	representation of the groups, Lie Algebra, Different	
	dimensions and parameter groups-their generators and	
	algebra, Simple and semi-simple Lie Algebra, Standard	
	form of Lie Algebras, Root diagrams for groups of different rank.	
UNIT II	Quark Model Fermi Yang model, Sakata model, Necessity	15
	of Quark model, Shortcomings of Eight fold way, Gell -	
	Mann Zweig model, Quark-Lepton symmetry and structure	
	of Hadrons, Need of charm quantum number and charmed	
	quark, Elementary idea of charm, bottom and top quarks,	
	Baryon magnetic moments in quark model, Experimental	
	status of Quarks.	
UNIT III	Gauge Field Theories Concept of gauge fields and gauge	15
	connections, Principle of gauge invariance, Global and	
	local Abelian gauge invariance, U(1) gauge invariance of	
	QED.	
UNIT IV	Yang- Mills gauge field, Non-Abelian gauge field theory	15
	(SU(2) case), Concept of spontaneous symmetry breaking	
	and Goldstone Bosons, Higgs Mechanism with physical	
	examples and mass generation for gauge fields	
	Suggested Readings:	
.E	C. Close: Quarks and Patrons	
D.	C. Cheng and O Neil: Elementary Particle Physics	
Р.0	Cheng and G. LF Li: Gauge Field Theory	
Ι	J. Aitchison and A. J. Hey: Gauge theories in Particle Physics	
H.	Georgi : Lie Algebras in particle Physics	

D. B. Lichtenberg : Unitary Symmetry and Elementary Particles,	
Academic Press, 1978	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	-
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	-
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

		MASTER IN PHYSICS			
Programme: MAST	ER IN	PHYSICS	YEAR V	SEMESTER IX PAPER IV d	
		Subject: Physics		FAFEKIVU	
Course code		Course Title: Sp	ectroscopy -II		
	Course Outcomes:				
	nce and	would study the various types of laser technology. Knowledge acquired by the sector.			
Credits: 4	Credits: 4			Core Compulsory	
Max. Marks: 100 External Exam: 7 Internal assessme	75			Min. Passing Marks: 36	
Total No. of Lecture	es-Tutor	ials-Practical (in hours per week): 4-0-0			
UNIT		TOPIC		No. of Lectures	
UNIII	UNIT I Radiation and Matter Interaction of radiation with matter, Einstein quantum theory of radiation, Einstein's coefficients, Momentum Transfer, Lifetime, Theory of optical frequencies, Coherence Spatial and temporal and Monochromaticity, kinetics of optical absorption, line width, line broadening mechanisms.				
UNIT II	UNIT II Basic Elements of Lasers Spontaneous emission, Stimulated emission, Possibility of amplification, laser pumping, Population Inversion, Three and four level scheme, Threshold condition, rate equations, Active resonators & laser modes, gain saturation.			15	
UNIT III	Ne la	of Lasers Different types of lasers, ser, N ₂ & CO ₂ lasers dye lasers, solid AG, semiconductor lasers. Tunabilit	l state lasers,	15	
UNIT IV		ications of Lasers	-	15	
	Basic	e application of laser spectroscopy, lang of atoms etc.	aser cooling and		
Bar	nwell: F	Suggested Readings: undamentals of Molecular Spectroscopy	Walker and		
Stra	anghen:	Spectroscopy Vol. I, II, & III Herzberg:			
Spe	ectra of o	liatomic molecules			
Jea	nne L N	Ichale: Molecular Spectroscopy			
.F.	Bemath	: Spectra of atoms and molecules			
MI	Holias: 1	Modern Spectroscopy			
		jan and A.K. Ghatak: Lasers: Theory an uantum Electronics	d applications		
A					

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester VIII with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning (NPTEL),	
https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme:MAST	ER IN PHYSICS	YEARV	SEMESTER IX
			PAPER IVe
	Subject:Physics		-
Course code	CourseTitle: Conden	sed Matter Phys	sics -II
	CourseOutcomes:		
	us provides knowledge about the basic co		
~ ~	by condensed matter, especially solids to		
Ų	e of ferroelectrics. The course also dev	·	•
•	d their properties. This course also deals wit	•	transport propertie
<u> </u>	ance, and imparts knowledge to the students		
Credits:4			Core
Max.Marks:100			Compulsory Min.Passi
ExternalExam:75			ngMarks:
Internalassessme			36
	Tutorials-Practical(inhoursperweek):4-0-0		
	r atomato-i racticat(innoursper week).+-0-0		
UNIT	ТОРІС		No.
	Torre		ofLectures
UNIT I	Nearly free electron model: One dimen	sional free elect	tron 15
	ase, Nearly free electron case, ener		
	limension, tight binding approximation		
	Vigner Seitz cellular method, Orthogor	••	
	OPW) method, Pseudo potential method	-	
	and theory (Mott Transition)	ou, Emitations	, 01
	• • •		
	erroelectrics Materials: Structural	phase transit	,
	erroelectric crystals, classification of fe	•	
	isplacive transition, soft optical phonons, la	• •	
	ransition, Second and first order transition		
	ransmission and reflection. antiferroelec	tricity, terroeled	etric
	omains.	<u></u>	15
	superconductivity: Experimental Survey,		•
	onductivity, destruction of superconductivi nd temperature, Meissner effects, Ty		
	1	••	be-II
	•	ermodynamics	of
	uperconducting transition, London Equation BCS Theory, Cooper pairs, Josephson super		-
	AC & DC Josephson effect, High temperat		-
	ritical fields and critical currents.	are superconduct	.013,
	inical fields and critical currents.		

		15
UNIT IV	Transport properties and magnetic resonance: Sommerfeld	15
	theory of electrical conductivity, Boltzmann transport equation,	
	Relaxation time, Experimental determination of Hall coefficient,	
	Residual resistivity, Temperature dependent resistivity, Principle	
	of magnetic resonance, Nuclear magnetic resonance, Electron spin	
	resonannce, Resonance, Flourescence, Theory of Mössbauer	
	effect, Isomer shift, Quadrupole interaction, magnetic hyperfine	
	interaction.	
	SuggestedReadings:	
	y T.C. and, Chaikimand P.M., Principle of condensed matter	
•	Cambridge University Press, 2012.	
2. Ryogo H	K., Solid State Physics, McGraw-Hill, 1969.	
	va, J. P, Elements of Solid State Physics, Prentice Hall of	
India, 20	006.	
4. Otfried	M., Introduction to Solid State Physics, Spinger, 1978.	
5. Patterson	J., and Bernard C., Introduction to Solid State Physics,	
Springer	r, 2007.	
6. Kittel C.	Introduction to solid state Physics, Wiley, 2008.	
7. Ashcroft	N. and Mermin N., Solid State Physics, Cambridge University	
Press, 19	76.	
8. Saxena A	A. K., Solid State Physics, Laxmi Publication, 2017.	
	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VIII with Physics as major	
	Suggested Equivalent Online Courses:	
7. MITOpenLea	arning-	
MassachusettsIn	nstituteofTechnology, https://openlearning.mit.ed	
u/		
8. NationalProg	rammeonTechnologyEnhancedLearning(NPTEL),https:	
Ũ	be.com/user/nptelhrd	
9. SwayamPrab		
•	www.swayamprabha.gov.in/index.php/program/curre	
nt_he/8	www.swayampraona.gov.n//mdcx.pnp/program/curre	
III_IIC/ 0		

Course Outcome nt will have adequate knowledge to perform ith clear understanding of the theory behind t ill know about various electronics experimer rks: 100 Exam: 75	es e: PRACTIC es: the experim he experim	ents of d ent.	
e Course Title Course Outcome nt will have adequate knowledge to perform ith clear understanding of the theory behind ill know about various electronics experimer rks: 100 Exam: 75	e: PRACTIC es: the experim he experim	ents of d ent.	lifferent fields of ed experiments in
e Course Title Course Outcome nt will have adequate knowledge to perform ith clear understanding of the theory behind ill know about various electronics experimer rks: 100 Exam: 75	e: PRACTIC es: the experim he experim	ents of d ent.	ed experiments in
Course Outcome nt will have adequate knowledge to perform ith clear understanding of the theory behind ill know about various electronics experimer rks: 100 Exam: 75	s: the experim he experim	ents of d ent.	ed experiments in
nt will have adequate knowledge to perform ith clear understanding of the theory behind to ill know about various electronics experimer rks: 100 Exam: 75	the experim he experim	ent.	ed experiments in
ith clear understanding of the theory behind to ill know about various electronics experiment rks: 100 Exam: 75	he experim	ent.	ed experiments in
ill know about various electronics experimer rks: 100 Exam: 75	-		-
rks: 100 Exam: 75			-
Exam: 75			Core
Exam: 75			
Exam: 75			Compulsory
			Min. Passing
accossment. 25			Marks: 36
). 0-0-4		
2000 Patoriais Practical (in nouis per week	,		
List of Experiments			No. of Lectures
2. Study of ESR spectra of a give	en sample.		
3. Hall Effect			
4. RCS Spectrometer			
5. Gamma ray spectrometer			
6. Radio Receiver			
7. e by Millikan's oil drop metho	d.		
8. Temperature dependence of di	ode charact	eristics.	
9. Elastic constants of a cubic cry	stal by ultr	asonic	60
waves.			
10. Study of Multivibrators.			
11. Study of transistor am	olifier	cum	
feedback amplifiers.			
12. Study of absorption	of	KMnO	4
by			
Spectrophotometer			
13. Study of different FETs and M	OSFETs.		
14. Study of Thermo luminance.			
15. Study of VTVM.			
Can be opted by			
Bachelor in Science with Physics as majo	r subject		
Suggested Continuous Evaluation Met	hods:		
	ssessment: 25 f Lectures-Tutorials-Practical (in hours per week List of Experiments 1. Verification of Richardson's la 2. Study of ESR spectra of a give 3. Hall Effect 4. RCS Spectrometer 5. Gamma ray spectrometer 6. Radio Receiver 7. e by Millikan's oil drop metho 8. Temperature dependence of di 9. Elastic constants of a cubic cry waves. 10. Study of Multivibrators. 11. Study of transistor amplifiers. 12. Study of absorption by Spectrophotometer 13. Study of different FETs and M 14. Study of Thermo luminance. 15. Study of VTVM. Can be opted by Bachelor in Science with Physics as majo	ssessment: 25 f Lectures-Tutorials-Practical (in hours per week): 0-0-4 List of Experiments 1. Verification of Richardson's law. 2. Study of ESR spectra of a given sample. 3. Hall Effect 4. RCS Spectrometer 5. Gamma ray spectrometer 6. Radio Receiver 7. e by Millikan's oil drop method. 8. Temperature dependence of diode charact 9. Elastic constants of a cubic crystal by ultr waves. 10. Study of Multivibrators. 11. Study of transistor amplifier feedback amplifiers. 12. Study of absorption of by Spectrophotometer 13. Study of different FETs and MOSFETs. 14. Study of Thermo luminance. 15. Study of VTVM.	ssessment: 25 f Lectures-Tutorials-Practical (in hours per week): 0-0-4 List of Experiments 1. Verification of Richardson's law. 2. Study of ESR spectra of a given sample. 3. Hall Effect 4. RCS Spectrometer 5. Gamma ray spectrometer 6. Radio Receiver 7. e by Millikan's oil drop method. 8. Temperature dependence of diode characteristics. 9. Elastic constants of a cubic crystal by ultrasonic waves. 10. Study of Multivibrators. 11. Study of transistor amplifier cum feedback amplifiers. 12. Study of absorption of KMnO by Spectrophotometer 13. Study of different FETs and MOSFETs. 14. Study of Thermo luminance. 15. Study of VTVM. Can be opted by Bachelor in Science with Physics as major subject

	В	achelor in S		se Prerequisi with Physics	tes as major subj	iect	
Suggested Equivalent Online Courses:							
1.	Virtual	Labs	at	Amrita	Vishwa	Vidyapeetham,	

https://vlab.amrita.edu/?sub=1&brch=74	
2. Digital Platforms /Web Links of other virtual labs may be suggested / adde	d
to this lists by individual Universities	

	MASTER IN PHYSICS		
Programme: MAS	TER IN PHYSICS	YEAR V	SEMESTER X PAPER I
	Subject: Physics		
Course code	Course Title: Nuc	clear Physics	
	Course Outcomes:		
In this course stu	idents would know about the general propert	ties of nuclei, nu	clear forces and
detectors, radioad	tive decay and nuclear reactions. The course but	uilds a foundation	for the students
	arch in the field of nuclear physics, high ener		
•	and applied nuclear physics.		1 2
Credits: 4			Core
creation 1			Compulsory
Max. Marks: 10	0		Min. Passing
External Exam:			Marks: 36
Internal assessn			19141 KS. JU
TOTALINO. OF Lectur	res-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	ТОРІС		No. of
			Lectures
UNIT I	Nuclear Properties and Nuclear Models Cor	ncepts of Atomic	15
	Nuclear-Size, Shape, charge distribution,	•	
	magnetic moment; electric quadrupole m	· · ·	
	energy; semi-empirical mass formula, mirro	-	
	drop model, Experimental evidence for sho	-	
	model, Magic numbers, Spin orbit coupling		
	shell model-its validity and limitations; coll	ective model.	
UNIT II	Nuclear Forces and Nuclear Interactions The	eory of Deuteron	15
	and nuclear level properties, nucleon - nucle	•	15
	low & highenergy nucleon-nucleon scatte	-	
	Meson theory of nuclear forces, Spin depend	ience and charge	
	independence of nuclear forces.		
UNIT III	Nuclear Reactions Kinds of nuclear reaction	ne: Concervation	15
	laws; Nuclear reaction Kinematics; charge		13
		^	
	spectroscopy; neutron spectroscopy; nuclea		
	compound nucleus; Nuclear transmutation		
	theory of nuclear reaction, Nuclear fission,	Chain reactions,	
	Nuclear fusion, Thermonuclear reactions.		
UNIT IV	Nuclear Decays Basic understanding of and	- decay	15
		-	13
	Fermi theory of beta decay, selection r	•	
	Neutrino hypothesis, Parity violation in capture and internal conversion.	beta decay, K	

Suggested Readings:	
E. Burcham: Nuclear Physics	
Ervin Kapalan: Nuclear Physics	
Li viii Kaparan. Nuclear Triysies	
Roy & Nigam: Nuclear Physics	
S. N. Ghoshal: Atomic and Nuclear Physics	
A. Enge: Nuclear Physics	
.D. Evans: Nuclear Physics	
E. Segre: Nuclei and Particles	
H.M. Agrawal: Nuclear Physics, PHI Learning	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

MASTER IN PHYSICS				
Programme: MASTER IN	YEAR V	SEMESTER X		
			PAPER II	
	Subject: Physics			
Course code	Course Title: Digital Electronics	and Computer A	rchitecture	
	Course Outcomes:			
The course enables s	The course enables student to get knowledge about Digital Electronics and Computer			
Architecture. The cours	Architecture. The course includes Fundamentals of Digital Circuit, Computer Organization and			
Architecture, Instructi	Architecture, Instruction formats & Microprocessor, Data Communication, Computer and			
Communications. The co	Communications. The course helps student to work for the development of technology and also			
	the for the industry and various Government organizations.			
Credits: 4			Core Compulsory	
Max. Marks: 100			Min. Passing	

Credits: 4		Core Compulsory
Max. Marks: 10	0	Min. Passing
External Exam:	75	Marks: 36
Internal assessn	nent: 25	
Total No. of Lectur	res-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	TOPIC	No. of Lectures

UNIT I	Digital Circuit & Microprocessor Elementary idea of combinational and sequential circuits, Overview of Microcomputer organization and operation, Microprocessor evolution and types, Fundamental knowledge of Microprocessor (8085/8086), Architecture and its operation, Basic idea of logic devices for interfacing 8085/8086.	15
UNIT II	Computer Organization and Architecture Central Processing Unit, Computer organization, Instruction formats (e.g. Three address, Two address etc), addressing modes, Timing diagram, Interconnection of different units, I/0 to processor and processor to memory communication, Interrupt structures, Multiprogramming, processor features RISC, CISC, cache memory, real and virtual memory.	15
UNIT III	Data Communication Computer and Communications, Need for communication networks, Internet and World Wide Web, communication protocols, Local Area Networks, Interconnecting networks, Future of Network Technology.	15
UNIT IV	Computer Network Characteristics of communication channels, Allocation of Channels, Physical Communication media, Public Switched Telephone Network, Cellular Communication Path, ATM networks Suggested Readings:	15
	Morris Mano : Computer system Architecture, (PHI) (Eastern Economy Edition)	

V. Ra	ajaraman: Fundamentals of computers, (Prentice Hall of India)	
Morr Editio	ies Mano: Computer system architecture, (Estern Economy on)	
	am: Computer fundamental-architecture and organization (New International Publishers)	
Tena	n Bomm: Computer Network	
	esh Gaonkar: Microprocessor, Architecture, programming and cation with the 8085	
	zer Rehaman: Microprocessor programming and Interfacing Intel and 8086	
	Can be opted by	
Bache	elor in Science with Physics as major subject	
Suį	ggested Continuous Evaluation Methods:	

Course Prerequisites Passed Semester IXwith Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

_	MASTER IN PHYSIC		
Programme: M	ASTER IN PHYSICS	YEAR V	SEMESTER > PAPER III A
	Subject: Physics		
Course code		vanced Electronics-I	II
	Course Outcomes:		
This course he	elps the students to gain advanced concepts	of power supply reg	ulation, microway
production an	d microwave generation which has wide	applications in mo	odern industry an
Research.			
Credits: 4			Core
			Compulsory
Max. Marks:	100		Min.
External Exa	m: 75		Passing
Internal asses	ssment: 25		Marks: 36
	ctures-Tutorials-Practical (in hours per week): 4	4-0-0	
UNIT	ТОРІС		No. of
			Lectures
UNIT I	Integrated Circuit Technology: Class		
	growth and wafer preparation, mor	nolithic IC proces	ses:
	oxidation, photo and fine line lithograph	hy, wet and dry etch	ing,
	diffusion and ion implantation, e	epitaxial growth	and
	metallization, fabrication of IC of	components: resist	ors,
	capacitors, diodes and bipolar transistor		
UNIT II	Operational Amplifier (OA): Differe	ential amplifier and	l its 15
	configurations, DC and AC analysis o	f differential ampli	fier,
	CMRR, operational amplifier, circuit ty	pe of OA 741, effect	s of
	offset, virtual ground, virtual short, inv	erting and noninver	ting
	amplifier.	C	
UNIT III	Linear Analog systems: Summing an	nd difference ampli	fier. 15
	voltage follower, OA as log and antilog	•	,
	voltage to current converter, current		
	integrator and differentiator.	to voltage conve	
UNIT IV	Non-Linear Analog Systems: Compa	rator, sample and l	nold 15
	circuit, IC 555 timer, waveform gen	•	
	amplifier, precision rectifier, active fil		
	Phase Locked Loop.	· · · · · · · · · · · · · · · · · · ·	• • •
	r.		

	Suggested Readings:	
1.	'Operational Amplifiers and Linear Integrated Circuits' - R.F. Coughlin and F.F. Driscoll, PHI Private Limited.	
2.	'Op-Amps and Linear Integrated Circuits'- R.A. Gayakwad, PHI Private	
	Limited.	
3.	'Integrated Circuits' - K.R. Botkar, Khanna Publishers.	
4.	'Fundamentals of Semiconductor Fabrication' - G.S. May and S.M. Sze,	
	John Wiley & Sons, Inc.	

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme: MAS	FER IN PHYSICS	YEAR V	SEMESTER X PAPER III B
	Subject: Physics		
probe the Sun-	Course Title: As Course Outcomes: des the basic physical mechanisms about the solar ac Earth connection. This study provides the knowl tars and the distribution in Galaxies.	ctivities, v	which will help to
Credits: 4			Core Compulsory
Max. Marks: 10 External Exam: Internal assessm	75 nent: 25		Min. Passing Marks: 36
Total No. of Lectur	res-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	ТОРІС		No. of Lectures
UNIT I	Sun as a star : Solar spectrum, effective temper luminosity, photospheric absorption lines, darkening; energy source: Kelvin time scale, re- fusion; energy transport in the sun, Thomson sca mean free path, photon diffusion inside the photosphere, chromosphere, transition region, core	limb nuclear ttering, e Sun;	15
UNIT II	Quiet and Active Sun, Sunspots, their formatic magnetic field, Solar flares, Solar filaments/promit Coronal mass ejections (CMEs), Solar wind, D type of solar eruptions models, Coronal heating, O solar cycle.	nences, ifferent	15
UNIT III	General idea of Heliosesmology, Astroseismology Description about p-mode and g-mode oscil Introduction to variable stars and their locations diagram. Classifications, Cephieds variables (Cephieds and W Virginis stars), RR Lyrae stars, M variables, Eruptive variables, Flare stars, M variables, Supernovae, roAP stars	lations, in H-R (classic Iira	15
UNIT IV	The Milky way and Other Galaxies Distributions of in the Milky way, Morphology, Kinematics, Inter- medium, Galactic center. External galaxies, Types of galaxies: spirals, ellipticals and irre- Hubble classification for galaxies, 21cm line, r cure, dark matter.	erstellar egulars,	15
	Suggested Readings: ix: The Sun: An Introduction D. Abhyankar : Astrophysics: Stars and Galaxies		

T. Padmanabhan : Galaxies and Cosmology Motz : Astrophysics

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MA	STER IN PHYSICS YEAR V	SEMESTER X
	Subject: Physics	PAPER III C
Course code	Course Title: Hight Energy Ph	vsics-III
	Course Outcomes:	
to know the co	Id provide the knowledge of advanced concepts of HEP. The stu omplicated theory of Relativistic propagators, S matrix expans QED. It would open doors for the students who want to work in	ion ans S matrix
Credits: 4		Core Compulsory
Max. Marks: 1		Min. Passing
External Exan		Marks: 36
Internal assess		11111151 00
	ures-Tutorials-Practical (in hours per week): 4-0-0	
UNIT	ΤΟΡΙΟ	No. of Lectures
UNIT I	Relativistic Propagators Relativistic propagators using quantized formulation of free fields, Properties of quantized scalar fields(Real and complex cases), Algebra of field operators, covariant form of the field operators algebras (Covariant commutation relations), Meson propagator and it characteristics, Properties of quantized spinor fields, Algebra of spinor field operator, Covariant form of anti-commutation relations, Fermion propagator and its characteristics properties of quantized EM field, Covariant commutation relations of EM field operators, Photon propagator and it characteristics, EM interaction in terms of radiation field and instantaneous coulomb fields.	1 1 7 5 5 5 1 7 7 7 7 7 7 7 7 7 7 7 7 7
UNIT II	Operator Products, Feynman Propagators and S-matrix Expansion Various type of operator products (Normal, Dyson products and Chronological T-products), Wick's theorem Feynman propagators and its physical interpretation Interacting fields, S-Matrix formulation as a perturbative series solution of collision processes, Dyson expansion of S matrix.	, , 2
UNIT III	S-matrix Formulation of QED Interaction Hamiltonian in QED, Reduction of S-matrix for the case of QED, Representation and description of various first and secon order processes in QED using S-matrix expansion.	15 d
UNIT IV	Compton scattering, Moller scattering, Bhabha scattering Electron self energy, Photon self energy, vacuum configuration in QED, Feynman diagrams and Feynman Rules in QED.	1

Suggested Readings:	
Ryder: Quantum Field Theory	
B.K. Agarwal: Quantum Mechanics and Field Theory	
F Mandel and G. Shaw: Quantum Field Theory	
Roman: Quantum Field Theory	
A Desi Quantum Field theory	
A. Das: Quantum Field theory	
M.E. Dashin, D.V. Cabroadam An Introduction to Occur (cm. Field	
M. E. Peskin, D.V. Schroeder: An Introduction to Quantum Field	
Theory	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Suggester Continuous Difundation receivers	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	Subject: Physics Course Title: Spe Course Outcomes: ould study the various types of la echnology. Knowledge acquired	asers, Laser spect	* •
In this course the students we applications in science and to for various industries and R& Credits: 4	Course Title: Spe Course Outcomes: ould study the various types of la echnology. Knowledge acquired	asers, Laser spect	roscopy and their
In this course the students we applications in science and to for various industries and R& Credits: 4	Course Title: Spe Course Outcomes: ould study the various types of la echnology. Knowledge acquired	asers, Laser spect	* •
In this course the students we applications in science and to for various industries and R& Credits: 4	Course Outcomes: ould study the various types of la echnology. Knowledge acquired	asers, Laser spect	A •
applications in science and to for various industries and R& Credits: 4	ould study the various types of la echnology. Knowledge acquired	•	A •
applications in science and to for various industries and R& Credits: 4	chnology. Knowledge acquired	•	A •
applications in science and to for various industries and R& Credits: 4	chnology. Knowledge acquired	•	* •
for various industries and R& Credits: 4		5	
Credits: 4			
			a
Max. Marks: 100			Core
Max. Marks: 100			Compulsory
			Min. Passing
External Exam: 75			Marks: 33
Internal assessment: 25			
Total No. of Lectures-Tutorials-	Practical (in hours per week): 4-0-0		
UNIT			No. of
	TOPIC		

UNIT II Mechanism of Fluorescence Emission and decay mechanism, radiative & nonradiative processes, Jablonski diagram, Kasha rule, Fluorescence lifetime and quantum yield, stoke shift, Mirror image rule, Oscillator strength, Fluorescence polarisation and Anisotropy, Time scale of molecular processes in solution . 15 UNIT III Instrumentation for Fluorescence Spectroscopy Excitation and Emission spectra, An ideal spectrofluorometer Distribution in Excitation & Emission spectra, Light sources, Monochromator, 15 UNIT IV Optical filters, Photomultiplier tubes, Photon counting versus Analog detection of Fluorescence Corrected Fluorescence spectra, Measurement of Fluorescence lifetime 15 Suggested Readings: Barrow G. M: Introduction to Molecular spectroscopy; MegrawHill 15 Herzberg G: Infrared and Raman Spectra of Polyatomic Molecules; Von Nostrand Herzberg G: Spectra of Polyatomic Molecules; on Nostrand J. R. Lackowicz: Principle of Fluorescence 16 Spectroscopy King G: Molecular Structure Can be opted by 17 Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: 18 Course Prerequisites Passed Semester IX with Physics as major 18 Nutro open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.suwayamprabha.gov.in/index.php/program/current_he/8 19	UNIT I	Molecular Symmetries and Group Theory Symmetry Properties of molecule: symmetry element, symmetry operation and point group, character table, Group theory: representation of a group, reducible and irreducible representations, LCAO coefficient of a polyatomic molecule, Huckel approximation, overlap and resonance integrals, Wheal's approximation.	15
Emission spectra, An ideal spectrofluorometer Distribution in Excitation & Emission spectra, Light sources, Monochromator, UNIT IV Optical filters, Photomultiplier tubes, Photon counting versus Analog detection of Fluorescence Corrected Fluorescence spectra, Measurement of Fluorescence lifetime Suggested Readings: Barrow G. M: Introduction to Molecular spectroscopy; McgrawHill Herzberg G: Infrared and Raman Spectra of Polyatomic Molecules; Von Nostrand Herzberg G: Spectra of Polyatomic Molecules; von Nostrand J. R. Lackowicz: Principle of Fluorescence Spectroscopy King G: Molecular Spectroscopy King G.W: Spectroscopy and Molecular Structure Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,	UNIT II	radiative & nonradiative processes, Jablonski diagram, Kasha rule, Fluorescence lifetime and quantum yield, stoke shift, Mirror image rule, Oscillator strength, Fluorescence polarisation and Anisotropy, Time scale of molecular processes	15
Analog detection of Fluorescence Corrected Fluorescence spectra, Measurement of Fluorescence lifetime Suggested Readings: Barrow G. M: Introduction to Molecular spectroscopy; McgrawHill Herzberg G: Infrared and Raman Spectra of Polyatomic Molecules; Von Nostrand Herzberg G: Spectra of Polyatomic Molecules; on Nostrand J. R. Lackowicz: Principle of Fluorescence Spectroscopy King G: Molecular Spectroscopy King G.W: Spectroscopy and Molecular Structure Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,	UNIT III	Emission spectra, An ideal spectrofluorometer Distribution in Excitation & Emission spectra, Light sources,	15
Barrow G. M: Introduction to Molecular spectroscopy; McgrawHill Herzberg G: Infrared and Raman Spectra of Polyatomic Molecules; Von Nostrand Herzberg G: Spectra of Polyatomic Molecules; on Nostrand J. R. Lackowicz: Principle of Fluorescence Spectroscopy King G: Molecular Spectroscopy King G.W: Spectroscopy and Molecular Structure Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,	UNIT IV	Analog detection of Fluorescence Corrected Fluorescence	15
Barrow G. M: Introduction to Molecular spectroscopy; McgrawHill Herzberg G: Infrared and Raman Spectra of Polyatomic Molecules; Von Nostrand Herzberg G: Spectra of Polyatomic Molecules; on Nostrand J. R. Lackowicz: Principle of Fluorescence Spectroscopy King G: Molecular Spectroscopy King G.W: Spectroscopy and Molecular Structure Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,		- Suggested Readings:	
Von Nostrand Herzberg G: Spectra of Polyatomic Molecules; on Nostrand J. R. Lackowicz: Principle of Fluorescence Spectroscopy King G: Molecular Spectroscopy King G.W: Spectroscopy and Molecular Structure Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,			
King G.W: Spectroscopy and Molecular Structure Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,		Von Nostrand Herzberg G: Spectra of Polyatomic Molecules; on	
Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,		Spectroscopy King G: Molecular Spectroscopy	
Can be opted by Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,			
Bachelor in Science with Physics as major subject Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,			
Suggested Continuous Evaluation Methods: Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,		Can be opted by	
Course Prerequisites Course Prerequisites Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,		Bachelor in Science with Physics as major subject	
Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,		Suggested Continuous Evaluation Methods:	
Passed Semester IX with Physics as major Suggested Equivalent Online Courses: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,		Course Prerequisites	
 MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel, 		-	
 https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel, 		Suggested Equivalent Online Courses:	
2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,		pen Learning - Massachusetts Institute of Technology,	
https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,		-	
mps.//www.swayampraona.gov.nvmdcx.pnp/program/current_nc/o	· ·		
	1	wayampraona.gov.nv mdox.pnp/program/current_nc/o	

MASTER IN PHYSICS				
Programme: MASTER IN PHYSICS YEARV SEMEST			SEMESTERX	
			PAPERIIIe	
	Subject: Physics			
Course code	CourseTitle: Conden	sed Matter Physi	cs -III	
CourseOutcomes:				
The present syllabus provides knowledge about the basic concepts, principles and the varior properties exhibited by condensed matter, especially solids to the students. The course widens to domain knowledge of synthesis of nanomaterials. The course also develops the basics knowled of carbon nanotubes to the students.			ourse widens the	
Credits:4			Core	
			Compulsory	

Max.Marks:10 ExternalExam Internalassessi	:75	Min.Passi ng Marks:36
TotalNo.ofLectur	res-Tutorials-Practical(inhoursperweek):4-0-0	1
UNIT	ΤΟΡΙΟ	No. ofLectures
UNITI	Nanoscale Systems: Nano science, Nano technology Length scales in physic Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thi films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano system Quantum confinement: Applications of Schrodinge equationInfinite potential well, potential step, potential box quantum confinement of carriers in 3D, 2D, 1D nanostructure and its consequences	n of s, er x,
UNITII	Synthesis of Nanomaterials-I : Physical Methods: Top-down vs. Bottom-up Technique Nonlithographic Techniques: Plasma Arc Discharge, Sputtering, Electron Beam and Thermal Evaporation, Pulsed Laser Deposition, Molecular Beam Epitaxy. Lithographi Process and its Limitations: Electron beam lithography, Io beam lithography, Photo lithography, x-ray lithography.	ic n
UNITIII	Synthesis of Nanomaterials-II: Chemical Methods: Chemical Vapor Deposition (CVD Solgels techniques, Co-precipitation, Hydrothermal, Spin an Dip coating techniques and Spray pyrolysis, Chemical Etchin Techniques, Electroplating, Langmuir Blodgett(L-B) method microemulsions.	id g
UNITIV	Carbon based Nanomaterials: Introduction to Carbon Clusters, CNTs and synthesis of carbon nanotubes.Growth mechanism, electronic structure of carbon nanotubes, preparation and characterization of fullerenes an graphene.Nanodiamond, Defects and purifications in CNT(Brief). SuggestedReadings:	n
Physics, 2. Ryogo K 3. Srivastav 2006. 4. Otfried M 5. Patterson Springer 6. Kittel C. 7. Ashcroft Press, 19	 y T.C. and, Chaikimand P.M., Principle of condensed matter Cambridge University Press, 2012. L., Solid State Physics, McGraw-Hill, 1969. va, J. P, Elements of Solid State Physics, Prentice Hall of India, M., Introduction to Solid State Physics, Spinger, 1978. n J., and Bernard C., Introduction to Solid State Physics, , 2007. , Introduction to solid state Physics, Wiley, 2008. N. and Mermin N., Solid State Physics, Cambridge University 	

	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VIII with Physics as major	
	Suggested Equivalent Online Courses:	
10.	MITOpenLearning-	
Mass	sachusettsInstituteofTechnology,https://openlearning.mit.e	
du/		
11.	NationalProgrammeonTechnologyEnhancedLearning(NPTEL),	
	https://www.youtube.com/user/nptelhrd	
12.	SwayamPrabha -DTH	
Char	nnel,https://www.swayamprabha.gov.in/index.php/program/curr	
ent_l	ne/8	

Drogramma	MASTER IN PHYSICS MASTER IN PHYSICS	YEAR V	SEMESTER
Programme: 1	MASTER IN PHYSICS	IEAK V	PAPER IV A
	Subject: Physics		TALEKIVA
Course code	Course Title: Advance	ed Electronics-IV	7
	Course Outcomes:		
This course	helps the students to gain basic ideas of the constr	ruction and wor	king of electroni
devices and	circuits. The course includes the study of combina	tional circuits,	sequential circui
and analog c	computation. The course is of much practical purpo	ose for the stude	nts to learn basic
e	ectronics. The digital electronics has wide application	· ·	g, process contro
signal proce	ssing, communication systems, digital instruments	etc.	
Cueditor 4			Carra
Credits: 4			Core Compulsory
Max. Mark	s• 100		Min. Passi
External Ex			Marks: 36
	sessment: 25		Marks: 50
	Lectures-Tutorials-Practical (in hours per week): 4-0-0		
UNIT	TOPIC		No. of Lecture
UNIT I	Review of logic devices: logic gates, tristate	switch, Buffer	, 15
	Decoder, Encoder and D-Flip-flops, RAM, RC	-	e
	microcomputer, architecture of a microp	rocessor, 808	5
	microprocessor architecture.		
UNIT II	Instructions-I: 8085 instruction set, data tran	nsfer operations	, 15
	arithmetic operations, logic operations, branch of	operations, stacl	ĸ
	and subroutines, restart, conditional call and re		,
	writing assembly language programs, debugging	g a program.	
UNIT III	Instructions-II: 8085 timing processes, opcode	e fetch machin	e 15
	cycle, read and write cycle timing, interrupt ackn		-
	timing diagrams of different instructions, 8085		
	vectored interrupts, serial I/O lines (SID & SOI	-	
	1	,	
UNIT IV	Interfacing of devices: memory mapping,	I/O mapping	, 15
	memory interfacing- interfacing of $4K \square 8$, $8K$	\Box 8 and 16K \Box	8
	memory chips, interfacing I/O devices, a	rchitecture and	ŀ
	programming of 8255 (PPI), 8251 (USART), a		
	peripherals.		
	* *		
	Suggested Readings:1.0000 to 8085, Introduction to microprocess	ors for engineers	
	and scientists: P.K. Gosh and P.R. Sridhar (PHI)	or or orgineers	
	2. Microprocessor Architecture, programming	, and applications	;
	with the 8085: Ramesh Gaonkar (Penram)		

Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

Drogramma: N	MASTER IN PHYSICS ASTER IN PHYSICS YEAR V	CT	EMESTER	2
Programme: N	IASTER IN PHYSICSYEAR V		APER IV B	1
	Subject: Physics			
Course code	Course Title: Astrophysics-	IV		
	Course Outcomes:			
This course w	vill provide the basic properties of stars, birth and the evolut	ion of star	s. In	
addition of t	his, it provides the deep understanding about the star clus	sters and t	their	
properties, e.	g. luminosity and mass function, mass-luminosity relations e	etc.		
Credits: 4		Co	ore	
			ompulsory	
Max. Marks			lin. Pass	in
External Exa		Μ	larks: 36	
Internal asso				
Total No. of L	ectures-Tutorials-Practical (in hours per week): 4-0-0			
* **			N T -	
UNIT	TOPIC		No. of Lectures	
UNIT I	Basic Properties of Stars: Mass, radius, distance, lu	minosity	Lectures	
	· · · · · · · · · · · · · · · · · · ·	5	15	
	temperature, magnitude system, Wien-displacement colou			
	indices, filters, H-R diagram, classification of stellar	^		
	luminosity classification, stellar motion, stellar population			
UNIT II	Star Formation and Stellar Evolution: Birth of stars, pr		15	
	Pre- main sequence evolution: Jeans instability, star fe			
	Hayashi track, Zero age main sequence (ZAMS), H			
	sequence evolution: Core He burning, shell burning,	-		
	phase, planetary nebulae, white dwarf physics, electron de			
	pressure, energy generation in stars – gravitational contra			
	chain, CNO cycle and triple alpha process, stellar life	, cycles-		
	Premain sequence, main sequence, giants.			
UNIT III	Star Cluster and their Properties: Open clusters, globula	r clusters	15	
	and the galaxy itself are examples of 'stellar systems';		1.	
	time; mean potential and total potential energy in a constant	•		
	sphere; equation of motion of N-body stellar syste	-		
	momentum, angular momentum and energy as constants of			
	stellar population, population I and II type objects, int			
	extension, reddening determination from color color diag			
	and distance determination of star clusters, luminosity			
	mass function, mass segregation, mass-luminosity relation			
	indes function, muss segregation, muss-funitionary felation			
UNIT IV	Cosmological Models: Universe at large scales – Homoge	neity and	15	
	isotropy – distance ladder – Newtonian cosmology - expansion			
	redshift - Cosmological Principle - Hubble's law - R			
	Walker metric - Observable quantities – luminosity and			
	diameter distances - Horizon distance- Dynamics of F			
	Robertson-Walker models: Friedmann equations.			
	Å			

Suggested Readings:	
Abhyankar K. D.: Astrophysics, Galaxies and Stars	
Vaidyanth Basu: An Introduction to Astrophysics	
Motz: Astrophysics	
T. Padmanabhan: Stars and Stellar Systems	
L Kutner: Astronomy: A Physical Perspective	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	
Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS		
Programme: MASTI	YEAR V	SEMESTER X	
			PAPER IV C
	Subject: Physics		
Course code	Course Title: High E	nergy Physics-l	V
	Course Outcomes:		
The course would p	provide the knowledge of some more advance	ced concepts of	HEP. The students
will also be able to	know the detailed theory of weak interact	tions, electrom	agnetic interactions
and strong interacti	•	,	0
Credits: 4			Core
			Compulsory
Max. Marks: 100			Min. Passing
External Exam: 7	5		Marks: 36
Internal assessmen	nt: 25		
Total No. of Lectures	s-Tutorials-Practical (in hours per week): 4-0-0		
	· · · · · · · · · · · · · · · · · · ·		
	TONO		
UNIT	TOPIC		No. of Lectures

UNIT I	Theory of Weak Interactions Classification of weak interaction in terms of Leptonic, Semi-leptonic and Non- Leptonic weak Decays, Current-Current Interaction and VA theory, Intermediate Vector Boson (IVB) concept, Conservation of Vector Current (CVC) Hypothesis, Two Component Theory of Neutrino, W and Z bosons as weak gauge bosons.	15
UNIT II	Theory of Electromagnetic Interactions Electron Positron Annihilation into Hadrons, Electron- Nucleon Scattering, Rutherford and Mott scattering, Electromagnetic form factors of Hadrons, Structure of nucleons, Elementary Idea of Unification of Fundamental Interactions with reference to standard model of electro weak unification.	15
UNIT III	Strong Interactions Paradoxes of Naive Quark Model, Need of color quantum Number for Quarks, Color SU(3) and Gluons, Quantum Chromodynamics, Pion-Nucleon Scattering,	15
UNIT IV	Spin Classification of Hadrons and Regge Trajectories, Asymptotic freedom and Perturbative QCD, Experimental indication for quarks and gluons, String model of hadrons and confinement of Quarks.	15
	Suggested Readings: E Close: Quarks and Patrons I.J. Aitchison and A.J. Hey: Gauge theories in Particle Physics F. Haltzin& A.D. Martin: Quarks and Leptons	
	D.H. Perkins : Introduction of High Energy Physics, Cambridge University Press 2000	

P. Cheng and G. LF Li: Gauge Field Theory	
ED Commins: Weak Interactions	
D.C. Cheng and O Neil: Elementary Particle Physics	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites	
Passed Semester IX with Physics as major	

Suggested Equivalent Online Courses:	
1. MIT Open Learning - Massachusetts Institute of Technology,	
https://openlearning.mit.edu/	
2. National Programme on Technology Enhanced Learning	
(NPTEL), https://www.youtube.com/user/nptelhrd 3. SwayamPrabha -	
DTH Channel,	
https://www.swayamprabha.gov.in/index.php/program/current_he/8	

	MASTER IN PHYSICS	
Programme: MAST	ER IN PHYSICS YEAR V	SEMESTER X
		PAPER IV D
	Subject: Physics	
Course code	Course Title: Spectroscopy-IV	
In this course the	Course Outcomes:	
	students would study the various types of lasers, Laser spect	
	ence and technology. Knowledge acquired by the course with the course with the course with the sector .	If be of much use
for various industr	les and R&D sector.	
<u> </u>		
Credits: 4		Core
Max. Marks: 100		Compulsory Min. Passing
External Exam: 7		Marks: 36
Internal assessme		Iviai KS. 30
	es-Tutorials-Practical (in hours per week): 4-0-0	
rotur 100. Of Lecture		
UNIT	ТОРІС	No. of
		Lectures
UNIT I	Ultrashort Pulses and Dynamics of Laser Processe	
	Production of giant pulse, Q-switching by different types of	
	shutters, giant	
	pulse dynamics, laser amplifiers, mode locking, mod	e
	pulling, ultra shot pulses, hole burning, holography	
UNIT II		15
	Non-Linear Optics Harmonic generation, phase matching second harmonic generation, third harmonic generation	,
	optical mixing, parametric generation of light, self focusing	
	of light.	Ď
	-	
UNIT III	Multi Photon Processes Multi quantum photoelectric effect	t, 15
	two photon processes, frequency up-conversion.	
UNIT IV	Stimulated Raman effect, coherent stokes & anti-stoke	es 15
	Raman scattering, photo acoustic spectroscopy	
	Suggested Readings:	
D. 1	Levenson: Introduction to non-linear laser spectroscopy	
D	Tend Terrardana Pasa att	
В.	Laud: Laser and non-linear optics	
Sve	elto: Lasers Demtroder: Laser Spectroscopy	
	Can be opted by	
Ba	chelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
ì	Suggester Continuous Evaluation Methous:	
	Course Prerequisites	
	Passed Semester IX with Physics as major	
	Suggested Equivalent Online Courses: 1. MIT	
Open Learning - N	Aassachusetts Institute of Technology,	

https://openlearning.mit.edu/				
2. National Programme on Technology Enhanced Learning (NPTEL),				
https://www.youtube.com/user/nptelhrd 3. SwayamPrabha - DTH Channel,				
https://www.swayamprabha.gov.in/index.php/program/current_he/8				

	MASTER IN I		
Programme:	MASTER IN PHYSICS	YEARV	SEMESTERX PAPERIVe
	Subject:Pl	•	
Course code		tle: Condensed Matter I	Physics -IV
	CourseOutco	omes:	
This course d	levelops the fundamental understanding	g of of various characteriz	zation techniques.
The course c	covers the in details X-ray diffraction, S	SEM, TEM etc.	
Credits:4			Core
			Compulsory
Max.Mark	s:100		Min.
ExternalEx	xam:75		PassingMar
Internalass	sessment:25		ks:36
TotalNo.ofL	ectures-Tutorials-Practical(inhoursperweek):4-0-0	
UNIT	TOPIC	4	No. of Lectures
UNITI	Structural Characterization and		
UNIT	materials characterization, Brage	•	
	detection of X-rays, X-ray dif		
	Determination of crystal structure, I	•	
	Size, Lattice Strain measuremen	its, williamson Hall F	101;
	Electron diffraction.		15
UNITII	Electron Microscopy and Surface	-	15
	Interaction of electrons with	U U	
	microscopy (SEM), Transmission		
	Scanning transmission electron mic		•
	Probe Microscope (SPM): Atomic		M),
	scanning tunneling microscopy (ST	'M).	
UNITIII	Optical and Thermal Characteriz	zation:	15
	Optical Microscopy, UV/Visib		ırier
	Transform Infrared spectroscopy	(FTIR), Atomic absorp	tion
	spectroscopy (AAS), Raman spectr	oscopy. Thermo gravime	etric
			ГА),
	DifferentialScanning Calorimetry (1	DSC).	
UNITIV	Magnetic Characterization:		15
	Spectroscopy Techniques: Basic of	nuclear magnetic resona	ince
	(NMR) and electron spin resort	e	
	Magnetic Measurements: Vibrating		
	(VSM), Superconducting Quan		vice
	(SQUID), Magnetic Force Microsco	opy, Mössbauer	
	Spectroscopy.		

SuggestedReadings	
1. Poole C.P., Owens Jr. Frank J., Introduction to Nanotechnology, Wiley India	
Pvt. Ltd.	
2. Kulkarni S.K., Nanotechnology: Principles & Practices, Capital	
Publishing Company.	
3. Chattopadhyay K.K. and Banerjee A. N., Introduction to Nanoscience	
and Technology, PHI Learning Private Limited.	
4. Booker R., Boysen E., Nanotechnology, John Wiley and Sons.	
5. Hosokawa M., Nogi K., Naita M., Yokoyama T., Nanoparticle	
Technology Handbook, Elsevier, 2007.	
6. Bhushan B., Springer Handbook of Nanotechnology, Springer-Verlag,	
Berlin, 2004.	

	Can be opted by	
	Bachelor in Science with Physics as major subject	
	Suggested Continuous Evaluation Methods:	
	Course Prerequisites	
	Passed Semester VIII with Physics as major	
	Suggested Equivalent Online Courses:	
13.	MITOpenLearning-	
Mass	sachusettsInstituteofTechnology,https://openlearning.mit.e	
du/		
14.	NationalProgrammeonTechnologyEnhancedLearning(NPTEL),	
	https://www.youtube.com/user/nptelhrd	
15.	SwayamPrabha -DTH	
Char ent_l	nnel,https://www.swayamprabha.gov.in/index.php/program/curr ne/8	

	MASTER IN PHYSICS	
Programm		EMESTER X
	Subject: Physics	RACTICAL
Course co		
	Course Outcomes:	
The stude	ent will have adequate knowledge to perform the experiments of diffe	rent fields of
physics v	vith clear understanding of the theory behind the experiment.	
Student v	vill know about advanced experiments based on their specialization p	aper.
Credits: 4		Core
		Compulsory
	arks: 100 Exam: 75	Min. Passing Marks: 36
	assessment: 25	Marks: 50
	of Lectures-Tutorials-Practical (in hours per week): 0-0-4	
10101110.		
UNIT	ТОРІС	No. of Lectures
	List of Experiments: (a) Advanced Electronics 1.	
	Study of regulated power supply (723).	
	2. Study of operational amplifier (741).	
	3. Study of Timer (555). 4. A to D and D to A converter	
	5. 1 of 16 Decoder/Encoder	
	6. Study of Multiplexer/Demultiplexer	
	7. Study of Logic gates (Different types)	
	8. Study of Comparator and Decoder	
	9. Study of amplitude and frequency modulations and	
	demodulations.	60
	10. Study of different flip- flop circuits (RS, JK, Dk type, T-	
	type, Master slave).	
	11. Study of Digital combinational and sequential circuits	
	12. Study of Microprocessor (8085) 13. Study of SCR, DIAC,	
	TRIAC	
	14. Study of IC- Based Power supply	
	15. Microwave experiment.	
	16. Shift Registers	
	17. Fiber Optics communication	
	List of Experiments: (b) Astrophysics	
	1. Study of Hubble's law (from given data)	
	2. Study of constant density neutron star 3. Study of the static parameters of a Neutron Star model with	
	3. Study of the static parameters of a Neutron Star model with	
	inverse square density distribution	Z 0
	4. Study of star cluster from a given data	60
	5. Study of Extinction coefficients	
	6. Study of variability of stars	

List of Experiments: (c) High Energy Physics	
1. Characteristic curve of a GM Detector and verification of	
inverse square law.	
2. Characteristic curve of a GM Detector and Absorption	
coefficient of a using aluminum GM Detector.	
3. Energy spectrum of gamma rays using gamma ray	
spectrometer.	
4. Absorption coefficient of aluminum using	
gama-ray spectrometer.	60
5. Characteristics of Scintillation Detector.	
6. Study of gama-gama unperturbed angular correlations.	
7. Study of particle tracks using a Nuclear Emulsion Detector.	
8. Classification of tracks in interaction with Nuclear Emulsion	
and determination of excitation energy.	
List of Experiments: (d) Spectroscopy	
1. Study of the vibrational levels of Iodine.	
2. Measurement of the fluorescence spectra of Uranyl Nitrate	
Hexahydrate.	
3. Determination of the intrinsic life time for a dye molecule.	
 Determination of change in dipole moment in excited state using Solvatochromic shift method. 	60
5. Measurement of non radiative decay rate for a known sample.	
6. Determination of the quantum yield of known samples using	
steady state spectroscopy.	
List of Experiments: (e) Condensed Matter Physics	
1. To determine the crystallite size of a nanomaterial using Debye Scherrer method	
2. To determine the band gap energy of a material	
3. To understand the microstructural features of ceramics	
4. Study and analysis of FTIR spectra	
5. To study I-V characteristics of a semiconductor	
6. To study the surface morphology of a material be SEM	60
7. Synthesis of nanoparticle using sol-gel method	
8. Determination of lattice parameters using XRD technique	
Can be opted by	
Bachelor in Science with Physics as major subject	
Suggested Continuous Evaluation Methods:	
Course Prerequisites Bocholor in Science with Physics as major subject	
Bachelor in Science with Physics as major subject	

1.	Virtual Labs at Amrita Vishwa Vidyapeetham,				
http	https://vlab.amrita.edu/?sub=1&brch=74				
2. add	2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities				